Featured Research

from universities, journals, and other organizations

Clues to common food poisoning: Salmonella creates environment in human intestines to foster its own growth

Date:
September 23, 2010
Source:
University of California -- Davis - Health System
Summary:
The bacteria Salmonella enterica -- a common cause of food poisoning -- exploits immune response in the human gut to enhance its own reproductive and transmission success, according to new research. The strategy gives Salmonella a growth advantage over the beneficial bacteria that are normally present in the intestinal tract and promotes the severe diarrhea that spreads the bacteria to other people.

Salmonella (rendering). When people ingest Salmonella, it invades the surface of the intestine. Our immune system responds by producing oxygen radicals to kill the bacteria. Although some Salmonella bacteria are killed by this response, many more benefit: the oxygen radicals create a sulfur compound called tetrathionate, which Salmonella are able to use instead of oxygen for respiration.
Credit: iStockphoto/Sebastian Kaulitzki

A study led by researchers at UC Davis has found how the bacteria Salmonella enterica -- a common cause of food poisoning -- exploits immune response in the human gut to enhance its own reproductive and transmission success. The strategy gives Salmonella a growth advantage over the beneficial bacteria that normally are present in the intestinal tract and promotes the severe diarrhea that spreads the bacteria to other people.

Related Articles


The findings are published in the Sept. 23 issue of the journal Nature.

"The human body normally has 10 times more microbes than human cells that help protect us against infection from disease-causing bacteria," said Andreas Bäumler, professor of medical microbiology and immunology at the UC Davis School of Medicine and the principal investigator of the study. "We have discovered Salmonella's cunning trick that allows it to quickly take over and outgrow the beneficial microbes in our intestine."

All bacteria must generate energy in order to live and reproduce, either by respiration -- which usually requires oxygen -- or fermentation. Because essentially no oxygen is available in our intestines, the beneficial bacteria that reside there tend to use fermentation, which is less efficient than respiration for obtaining energy.

When people ingest Salmonella, it invades the surface of the intestine. Our immune system responds by producing oxygen radicals to kill the bacteria. Although some Salmonella bacteria are killed by this response, many more benefit: the oxygen radicals create a sulfur compound called tetrathionate, which Salmonella are able to use instead of oxygen for respiration.

Interestingly, tetrathionate has been used since 1923 by microbiologists as a way to promote the growth of Salmonella in biological samples containing competing microbes. But because tetrathionate was not known to exist in living people, it was assumed prior to this study that this process had little relevance for food poisoning. Up until now, tetrathionate was believed to mainly exist naturally in decaying corpses or in thermal springs.

"Stimulating the host to produce tetrathionate enables Salmonella to 'breathe' in the intestine," said Sebastian E. Winter, who is a member of Bäumler's laboratory and lead author of the article. "This gives Salmonella a tremendous advantage over the gut bacteria that must grow by fermentation."

By stimulating an inflammatory response in the intestine, Salmonella also enhances its transmission to other hosts. The inflammatory response causes the severe diarrhea and vomiting that is the body's attempt to rid itself of the pathogenic bacteria, at the same time enabling Salmonella's spread.

The investigators used a combination of experiments with mouse models and test tubes to study the effects of intestinal inflammation on Salmonella and pinpoint the role of tetrathionate respiration. They also used novel techniques from the burgeoning field of metabolomics, which allowed them to measure metabolites in living animals.

Salmonella is frequently in the news as a source of food poisoning outbreaks, usually from eating poorly cooked or unhygienically prepared eggs or meat. Salmonella was the cause of a recall of about half a billion eggs last August and sickened more than 1,500 people. In that case, the ovaries of the hens were contaminated, so the inside of the eggs carried the bacteria and were not safe to eat unless thoroughly cooked. Reptiles such as turtles, lizards and snakes also carry the bacteria on their skin, sometimes causing illness in people who keep them as pets.

Salmonella infection, known as salmonellosis, causes diarrhea, fever, vomiting and abdominal cramps. Although most people recover after several days, it may be fatal, especially in the elderly, infants, and people with an impaired immune system.

For most cases of salmonellosis, antibiotic treatment is counterproductive, as it actually prolongs disease by further inhibiting the growth of beneficial bacteria. Finding that tetrathionate is important in human Salmonella infection opens up new avenues for research in finding an effective treatment for salmonellosis.

"Determining how Salmonella is so efficient in outcompeting resident beneficial bacteria is a critical first step in developing new drugs for treating food poisoning," said Bäumler, whose group is now pursuing this avenue of research. "We are hopeful that by targeting sulfur compounds we can stop the bacteria from establishing a foothold in the intestine."

Other UC Davis authors of the article are Parameth Thiennimitr, Maria G. Winter, Brian P. Butler, Douglas L. Huseby, Robert W. Crawford, Joseph M. Russell, Charles L. Bevins, Renée M. Tsolis, and John R. Roth. The other study author is L. Garry Adams from the College of Veterinary Medicine at Texas A&M University.


Story Source:

The above story is based on materials provided by University of California -- Davis - Health System. Note: Materials may be edited for content and length.


Journal Reference:

  1. Sebastian E. Winter, Parameth Thiennimitr, Maria G. Winter, Brian P. Butler, Douglas L. Huseby, Robert W. Crawford, Joseph M. Russell, Charles L. Bevins, L. Garry Adams, Renée M. Tsolis, John R. Roth & Andreas J. Bäumler. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature, 2010; 467 (7314): 426 DOI: 10.1038/nature09415

Cite This Page:

University of California -- Davis - Health System. "Clues to common food poisoning: Salmonella creates environment in human intestines to foster its own growth." ScienceDaily. ScienceDaily, 23 September 2010. <www.sciencedaily.com/releases/2010/09/100922131955.htm>.
University of California -- Davis - Health System. (2010, September 23). Clues to common food poisoning: Salmonella creates environment in human intestines to foster its own growth. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2010/09/100922131955.htm
University of California -- Davis - Health System. "Clues to common food poisoning: Salmonella creates environment in human intestines to foster its own growth." ScienceDaily. www.sciencedaily.com/releases/2010/09/100922131955.htm (accessed October 24, 2014).

Share This



More Health & Medicine News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) — The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) — An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins