Featured Research

from universities, journals, and other organizations

Structure of dangerous bacteria's powerful multidrug resistance pump revealed

Date:
September 22, 2010
Source:
Scripps Research Institute
Summary:
Scientists have detailed the structure of a member of the only remaining class of multidrug resistance transporters left to be described. The work has implications for combating dangerous antibiotic resistant strains of bacteria, as well as for developing hardy strains of agricultural crops.

A team at The Scripps Research Institute has detailed the structure of a member of the only remaining class of multidrug resistance transporters left to be described. The work has implications for combating dangerous antibiotic resistant strains of bacteria, as well as for developing hardy strains of agricultural crops.

The study was published in an advance, online issue of the journal Nature on September 22, 2010.

"Now with our crystal structure, scientists can for the first time figure out exactly how this transporter works," said the study's senior investigator, Geoffrey Chang, Ph.D., associate professor in the Scripps Research Department of Molecular Biology. "This could lead to the design of drugs that evade or inhibit the transporter, or to reengineering the transporter to help some plants grow in soil they can't grow in now."

The protein described in the study, NorM, was found in the virulent bacteria Vibrio cholerae. V. cholerae causes cholera, a disease that affects the small intestine and is a common cause of death in developing nations. The NorM transporter is responsible for widespread resistance to ciprofloxacin and other fluoroquinolones (a broad-spectrum, inexpensive class of antibiotics) and to tigecycline, a new class of drug specifically designed to overcome that antibiotic resistance.

Importantly, NorM is a member of the multidrug and toxic compound extrusion (MATE) family that is involved in important biological functions across all kingdoms of life. These transporters defend plant, animal, and microbial cells by pumping out toxic chemicals before they can have any effect. In addition to antibiotic resistance, MATE transporters are associated with resistance to a commonly used diabetes drug, as well as resistance to anti-inflammatory and anti- arrhythmia agents. In plants, MATE transporters help to neutralize the acidity of soil, directly affecting crop yields worldwide.

"By showing how a key member of the [MATE transporter] family undergoes shape changes during the extrusion process, this work may lead to new ways to block the transporter, with possible applications in medicine and agriculture," said Jean Chin, Ph.D., who oversees this and other structural biology grants at the National Institutes of Health (NIH).

It took a "Herculean effort" to produce the high-resolution crystal structure of NorM, Chang noted. The researchers found it was difficult to produce enough protein to work with, and hard to purify the transporter in its natural state.

After the team found a way to produce and purify the protein, the scientists still needed to create crystals to be able to use a technique known as x-ray crystallography to solve its structure. In this method, scientists produce and purify large quantities of a protein that are crystallized. The crystal is then placed in front of a beam of x-rays, which diffract when they strike the atoms in the crystal. Based on the pattern of diffraction, scientists can reconstruct the shape of the original molecule. In this case, though, the NorM crystals were unusually fragile under an x-ray beam.

After many attempts, however, the research team succeeded in producing two crystal structures of the NorM transporter as it sat on the outside surface of V. cholerae. One showed the transporter by itself and the other provided a snapshot of how the pump is powered by sodium ions.

The NorM transporter normally sits, waiting, on the inside of the bacterial cell membrane for toxic chemicals -- in this case antibiotics -- that seep inside. The protein then changes shape in order to scoop the chemical up, and transport it back through the cell wall to the outside of the bacteria, keeping the bacteria safe from destruction.

The structure of this bacterial pump revealed a shape distinct from all other MDR transporter families, say co-authors Xiao He and Paul Szewczyk, graduate students at the University of San Diego, California, (UCSD) who worked with Chang to derive the structure. The pair also took the lead in the effort to verify the crystal structure -- a process of labeling 16 different amino acids on the protein and confirming their three-dimensional position. This part of the effort took 18 months.

On the outside of the bacteria, the transporter looks like an upside down "V" shaped lampshade, He said, and the chemical to be removed presumably fits inside the narrow part of the structure. She adds that the research team is working to crystallize the transporter on the inside of the bacterium, as well as the structure with a chemical bound to it.

"Bacteria have a number of different transporter systems, so it is important to design antibiotics that will not be instantly pumped out," He noted.

With the atomic structure of NorM solved, the team continues to investigate other MATE transporters, including those found in plants and those that exist in human liver and kidney cells that can reduce the effectiveness of a wide variety of drugs.

In addition to Chang, He, and Szewczyk, authors of the study are Andrey Karyakin, Mariah Evin, Wen‐Xu Hong, and Qinghai Zhang of Scripps Research.

The study was funded by grants from the NIH, the Beckman Foundation, and the Skaggs Chemical Biology Foundation.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiao He, Paul Szewczyk, Andrey Karyakin, Mariah Evin, Wen-Xu Hong, Qinghai Zhang, Geoffrey Chang. Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature, 2010; DOI: 10.1038/nature09408

Cite This Page:

Scripps Research Institute. "Structure of dangerous bacteria's powerful multidrug resistance pump revealed." ScienceDaily. ScienceDaily, 22 September 2010. <www.sciencedaily.com/releases/2010/09/100922131957.htm>.
Scripps Research Institute. (2010, September 22). Structure of dangerous bacteria's powerful multidrug resistance pump revealed. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2010/09/100922131957.htm
Scripps Research Institute. "Structure of dangerous bacteria's powerful multidrug resistance pump revealed." ScienceDaily. www.sciencedaily.com/releases/2010/09/100922131957.htm (accessed October 21, 2014).

Share This



More Plants & Animals News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

'Cadaver Dog' Sniffs out Human Remains

'Cadaver Dog' Sniffs out Human Remains

AP (Oct. 21, 2014) Where's a body buried? Buster's nose can often tell you. He's a cadaver dog, specially trained to find human remains and increasingly being used by law enforcement and accepted in courts. These dogs are helping solve even decades-old mysteries. (Oct. 21) Video provided by AP
Powered by NewsLook.com
White Lion Cubs Born in Belgrade Zoo

White Lion Cubs Born in Belgrade Zoo

AFP (Oct. 20, 2014) Two white lion cubs, an extremely rare subspecies of the African lion, were recently born at Belgrade Zoo. They are being bottle fed by zoo keepers after they were rejected by their mother after birth. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com
Traditional Farming Methods Gaining Ground in Mali

Traditional Farming Methods Gaining Ground in Mali

AFP (Oct. 20, 2014) He is leading a one man agricultural revolution in Mali - Oumar Diatabe uses traditional farming methods to get the most out of his land and is teaching others across the country how to do the same. Duration: 01:44 Video provided by AFP
Powered by NewsLook.com
Goliath Spider Will Give You Nightmares

Goliath Spider Will Give You Nightmares

Buzz60 (Oct. 20, 2014) An entomologist stumbled upon a South American Goliath Birdeater. With a name like that, you know it's a terrifying creepy crawler. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins