Featured Research

from universities, journals, and other organizations

Milky Way sidelined in galactic tug-of-war, computer simulation shows

Date:
October 3, 2010
Source:
Harvard-Smithsonian Center for Astrophysics
Summary:
The Magellanic Stream is an arc of hydrogen gas spanning more than 100 degrees of the sky behind the Milky Way's neighbor galaxies, the Large and Small Magellanic Clouds. Our home galaxy has long been thought to be the dominant gravitational force in forming the Stream. A new computer simulation now shows that the Magellanic Stream resulted from a past close encounter between these dwarf galaxies rather than effects of the Milky Way.

This plot shows the simulated gas distribution of the Magellanic System resulting from the tidal encounter between the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) as they orbit our home Milky Way Galaxy. The entire sky is plotted in galactocentric coordinates of longitude and latitude. The Magellanic Stream is the pronounced tail of material that stretches 150 degrees across the southern sky. The solid line shows the calculated path of the LMC and the dotted line is the path of the SMC. The color range from dark to light shows the density (lower to higher) of the hydrogen gas making up the Magellanic Stream and the Bridge that connects the two dwarf galaxies.
Credit: Plot by G. Besla, Milky Way background image by Axel Mellinger (used with permission)

The Magellanic Stream is an arc of hydrogen gas spanning more than 100 degrees of the sky as it trails behind the Milky Way's neighbor galaxies, the Large and Small Magellanic Clouds. Our home galaxy, the Milky Way, has long been thought to be the dominant gravitational force in forming the Stream by pulling gas from the Clouds.

A new computer simulation by Gurtina Besla (Harvard-Smithsonian Center for Astrophysics) and her colleagues now shows, however, that the Magellanic Stream resulted from a past close encounter between these dwarf galaxies rather than effects of the Milky Way.

"The traditional models required the Magellanic Clouds to complete an orbit about the Milky Way in less than 2 billion years in order for the Stream to form," says Besla. Other work by Besla and her colleagues, and measurements from the Hubble Space Telescope by colleague Nitya Kallivaylil, rule out such an orbit, however, suggesting the Magellanic Clouds are new arrivals and not long-time satellites of the Milky Way.

This creates a problem: How can the Stream have formed without a complete orbit about the Milky Way?

To address this, Besla and her team set up a simulation assuming the Clouds were a stable binary system on their first passage about the Milky Way in order to show how the Stream could form without relying on a close encounter with the Milky Way.

The team postulated that the Magellanic Stream and Bridge are similar to bridge and tail structures seen in other interacting galaxies and, importantly, formed before the Clouds were captured by the Milky Way.

"While the Clouds didn't actually collide," says Besla, "they came close enough that the Large Cloud pulled large amounts of hydrogen gas away from the Small Cloud. This tidal interaction gave rise to the Bridge we see between the Clouds, as well as the Stream."

"We believe our model illustrates that dwarf-dwarf galaxy tidal interactions are a powerful mechanism to change the shape of dwarf galaxies without the need for repeated interactions with a massive host galaxy like the Milky Way."

While the Milky Way may not have drawn the Stream material out of the Clouds, the Milky Way's gravity now shapes the orbit of the Clouds and thereby controls the appearance of the tail.

"We can tell this from the line-of-sight velocities and spatial location of the tail observed in the Stream today," says team member Lars Hernquist of the Center.

The paper describing this work has been accepted for publication in the October 1 issue of the Astrophysical Journal Letters.

Besla's co-authors were Nitya Kallivayalil (MIT Kavli Institute for Astrophysics & Space Research), Lars Hernquist, R. P. van der Marel (STScI), T.J. Cox (Carnegie Observatories) and D. Keres (Harvard-Smithsonian Center for Astrophysics).


Story Source:

The above story is based on materials provided by Harvard-Smithsonian Center for Astrophysics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gurtina Besla, Nitya Kallivayalil, Lars Hernquist, Roeland P. van der Marel, T.J. Cox, Dusan Keres. Simulations of the Magellanic Stream in a First Infall Scenario. Astrophysical Journal Letters, 2010 (submitted); arXiv:1008.2210v1 [link]

Cite This Page:

Harvard-Smithsonian Center for Astrophysics. "Milky Way sidelined in galactic tug-of-war, computer simulation shows." ScienceDaily. ScienceDaily, 3 October 2010. <www.sciencedaily.com/releases/2010/09/100929123639.htm>.
Harvard-Smithsonian Center for Astrophysics. (2010, October 3). Milky Way sidelined in galactic tug-of-war, computer simulation shows. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2010/09/100929123639.htm
Harvard-Smithsonian Center for Astrophysics. "Milky Way sidelined in galactic tug-of-war, computer simulation shows." ScienceDaily. www.sciencedaily.com/releases/2010/09/100929123639.htm (accessed July 23, 2014).

Share This




More Space & Time News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Cargo Craft Undocks from Space Station

Raw: Cargo Craft Undocks from Space Station

AP (July 22, 2014) A Russian Soyuz cargo-carrying spacecraft undocked from the International Space Station on Monday. The craft is due to undergo about ten days of engineering tests before it burns up in the Earth's atmosphere. (July 22) Video provided by AP
Powered by NewsLook.com
NASA Ceremony Honors Moon Walker Neil Armstrong

NASA Ceremony Honors Moon Walker Neil Armstrong

AP (July 21, 2014) NASA honored one of its most famous astronauts Monday by renaming a historic building at the Kennedy Space Center in Florida. It now bears the name of Neil Armstrong, the first man to walk on the moon. (July 21) Video provided by AP
Powered by NewsLook.com
Neil Armstrong's Post-Apollo 11 Life

Neil Armstrong's Post-Apollo 11 Life

Newsy (July 19, 2014) Neil Armstrong gained international fame after becoming the first man to walk on the moon in 1969. But what was his life like after the historic trip? Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, July 18, 2014

This Week @ NASA, July 18, 2014

NASA (July 18, 2014) Apollo 11 yesterday, Next Giant Leap tomorrow, Science instruments for Europa mission, and more... Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins