Featured Research

from universities, journals, and other organizations

Important clues to how bacteria and viruses are identified as enemies

Date:
October 1, 2010
Source:
Federation of American Societies for Experimental Biology
Summary:
New research sheds important light on how our immune systems detect invading organisms to be destroyed and removed from our bodies. The information from this research should ultimately help lead to the development of new drugs and treatments that allow health care providers to prevent runaway immune reactions that can have devastating consequences for people.

A new research report in the October 2010 print issue of the Journal of Leukocyte Biology sheds important light on how our immune systems detect invading organisms to be destroyed and removed from our bodies. The information from this research should ultimately help lead to the development of new drugs and treatments that allow health care providers to prevent runaway immune reactions that can have devastating consequences for people.

"Our study helps us to understand exactly how the immune system is activated when it comes across infection from bacteria or viruses," said Melanie J. Scott, M.D., Ph.D., an author of the research report from the Department of Surgery at the University of Pittsburgh, Pennsylvania. "The more information we have about how this process works, the more likely we are to be able to help our immune systems fight off attacks from infections."

To make this discovery, scientists examined the production of a specific part of the complement system (called "factor B") in macrophages, an immune cell that both attacks foreign invaders and marks them for death by other types of immune cells. The researchers wanted to know if a molecule found on the outside of bacteria (lipopolysaccharide) or a synthetic version of a molecule found in some viruses (polyI:C) would stimulate factor B production by macrophages. The levels of factor B produced inside the cell were measured, as was the amount released from the cell. Results showed that lipopolysaccharide used a specific receptor on the outside of cells (TLR4) to produce factor B. polyI:C also stimulated factor B production in macrophages, not through its specific cell surface receptor (TLR3) but through another receptor that is located within cells. This shows that bacteria and viruses can produce similar end results in activating the body's defense systems, but they use different pathways to do the activation.

"As this research shows, the immune system is incredibly complex. It also highlights the redundancy which is vital to our survival," said John Wherry, Ph.D., Deputy Editor of the Journal of Leukocyte Biology. "Viruses and bacterial have evolved many strategies to avoid immune responses, but the immune system counters with additional tricks and alternative pathways. This research helps us better understand one very important set of redundant pathways that regulates a key defense mechanism and identifies therapeutic targets for controlling that response."


Story Source:

The above story is based on materials provided by Federation of American Societies for Experimental Biology. Note: Materials may be edited for content and length.


Journal Reference:

  1. D. J. Kaczorowski, A. Afrazi, M. J. Scott, J. H. Kwak, R. Gill, R. D. Edmonds, Y. Liu, J. Fan, T. R. Billiar. Pivotal Advance: The pattern recognition receptor ligands lipopolysaccharide and polyinosine-polycytidylic acid stimulate factor B synthesis by the macrophage through distinct but overlapping mechanisms. Journal of Leukocyte Biology, 2010; DOI: 10.1189/jlb.0809588

Cite This Page:

Federation of American Societies for Experimental Biology. "Important clues to how bacteria and viruses are identified as enemies." ScienceDaily. ScienceDaily, 1 October 2010. <www.sciencedaily.com/releases/2010/09/100930101547.htm>.
Federation of American Societies for Experimental Biology. (2010, October 1). Important clues to how bacteria and viruses are identified as enemies. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2010/09/100930101547.htm
Federation of American Societies for Experimental Biology. "Important clues to how bacteria and viruses are identified as enemies." ScienceDaily. www.sciencedaily.com/releases/2010/09/100930101547.htm (accessed July 22, 2014).

Share This




More Health & Medicine News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins