Featured Research

from universities, journals, and other organizations

Biomarkers for personalizing radiation cancer treatment identified

Date:
October 5, 2010
Source:
Cold Spring Harbor Laboratory
Summary:
Radiation therapy is used to treat more than half of all cancer cases, but patient response to therapy can vary greatly. Genetics is increasingly recognized as a significant contributor to inter-individual radiation response, but the biology underlying response remains poorly understood. Researchers have now employed a pharmacogenomics approach to find biomarkers associated with radiation response that could help to more effectively tailor individual cancer treatments in the future.

Radiation therapy is used to treat more than half of all cancer cases, but patient response to therapy can vary greatly. Genetics is increasingly being recognized as a significant contributor to inter-individual response to radiation, but the biology underlying response remains poorly understood. In a study published online October 5 in Genome Research researchers employed a pharmacogenomics approach to find biomarkers associated with radiation response that could help to more effectively tailor individual cancer treatments in the future.

Related Articles


Response to radiation treatment can range from complete eradication of the tumor to severe adverse reactions in normal tissues that complicate a patient's recovery. Several clinical factors, such as radiation dose and fraction, are known to influence radiation response, but it has recently been estimated that genetic factors may explain nearly 80% of the inter-individual variation of radiation response in normal tissue. If genetic variants and biological mechanisms contributing to radiation response are identified, more personalized treatment strategies could be employed in the clinic.

In this study, researchers led by Liewei Wang of the Mayo Clinic performed a genome-wide association study on 277 ethnically defined human lymphoblastoid cell lines (LCLs) to identify biomarkers for radiation response. Previous studies have found that genetic variation significantly influences gene expression following radiation treatment, however a possible relationship of basal gene expression with radiation response has not been extensively studied until now, and could be key to predicting response. The group integrated several lines of data from the LCLs, including 1.3 million single nucleotide polymorphisms (SNPs), genome-wide gene expression data, and ionizing radiation cytotoxicity phenotypes.

By looking for SNPs and gene expression patterns that associate with a radiation response phenotype, Wang's group narrowed down a list of candidate genes associated with radiation treatment response. To functionally validate the biomarkers, the team tested the associations of a set of the candidate genes in three cancer cell lines. The validation experiments confirmed the expression of five genes as involved in radiation-induced response.

Wang noted that this work not only identifies biomarkers, but also sets the stage for uncovering novel functions of these genes that could ultimately benefit individual patients. "These studies will provide a foundation for future translational studies to individualize radiation therapy based on the expression of these candidate genes," said Wang, "and may make it possible to design novel combination therapy for selected patients based on these biomarkers to overcome resistance."

Scientists from the Mayo Clinic (Rochester, MN) contributed to this study.

This work was supported by the National Institutes of Health, an ASPET-Astellas award, and a Center of Excellence in Clinical Pharmacology Award from the PhRMA Foundation.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Niu N, Qin Y, Fridley BL, Hou J, Kalari KR, Zhu M, Wu T, Jenkins GD, Batzler A, Wang L. Radiation pharmacogenomics: A genome-wide association approach to identify radiation response biomarkers using human lymphoblastoid cell lines.. Genome Res, October 5, 2010 DOI: 10.1101/gr.107672.110

Cite This Page:

Cold Spring Harbor Laboratory. "Biomarkers for personalizing radiation cancer treatment identified." ScienceDaily. ScienceDaily, 5 October 2010. <www.sciencedaily.com/releases/2010/10/101004211639.htm>.
Cold Spring Harbor Laboratory. (2010, October 5). Biomarkers for personalizing radiation cancer treatment identified. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2010/10/101004211639.htm
Cold Spring Harbor Laboratory. "Biomarkers for personalizing radiation cancer treatment identified." ScienceDaily. www.sciencedaily.com/releases/2010/10/101004211639.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins