Featured Research

from universities, journals, and other organizations

Effects of hydrogen on growing carbon nanotubes

Date:
October 9, 2010
Source:
American Institute of Physics
Summary:
Carbon nanotubes have many potential uses in nanotechnology, optics, electronics, and many other fields. Their exact properties depend on their structure, but controlling that structure, which is determined during their initial formation, is difficult, and scientists do not know precisely how they grow. Researchers now shed new light on the process.

Carbon nanotubes -- long, hollow cylinders of carbon billionths of a meter in diameter -- have many potential uses in nanotechnology, optics, electronics, and many other fields. The exact properties of nanotubes depend on their structure, and scientists as yet have little control over that structure, which is determined during the initial formation -- or growth -- of the nanotubes. In fact, says chemical engineer and materials scientist Eray Aydil of the University of Minnesota, "we do not know precisely how the nanotubes grow."

In a paper in the American Institute of Physics' Journal of Applied Physics, Aydil, professor of chemical engineering and materials science and the Ronald L. and Janet A. Christenson Chair in Renewable Energy, and his colleagues shed new light on the process. In particular, the researchers examined the influence of hydrogen gas.

"Carbon nanotubes grow from a metal catalyst particle that is immersed in a gas like methane," Aydil explains. "Sometimes hydrogen gas is also added and it was found that a little bit of hydrogen helps to grow carbon nanotubes with nice straight walls and with few defects. However, too much hydrogen addition gives fibers with thick walls, instead of nanotubes, or no growth at all."

To understand why, Aydil and colleagues used transmission electron microscopy and other methods to systematically image and characterize the effects of increasing concentrations of hydrogen. "It turns out that the iron metal catalysts turn to iron carbide by reacting with the carbon in methane. Iron carbide is a hard material that is not easily deformed, and carbon nanotubes grown from such catalysts tend to have nice straight walls," he says.

Adding more hydrogen to the mix causes iron carbide to turn into iron -- which is more malleable and ductile, and "deforms into shapes that give rise to more fiber-like structures rather than hollow carbon nanotubes," he says. At higher concentrations, hydrogen etches the forming carbon nanotubes, "and growth stops all together. It is the interaction of the hydrogen with the catalysts and its effect on the catalyst's structure that controls the carbon nanotube structure."


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Eray S. Aydil, Michael J. Behr, Elizabeth A. Gaulding and K. Andre Mkhoyan. Effect of Hydrogen on Catalyst Nanoparticles in Carbon Nanotube Growth. Journal of Applied Physics, 108, 053303 (2010) DOI: 10.1063/1.3467971

Cite This Page:

American Institute of Physics. "Effects of hydrogen on growing carbon nanotubes." ScienceDaily. ScienceDaily, 9 October 2010. <www.sciencedaily.com/releases/2010/10/101005104440.htm>.
American Institute of Physics. (2010, October 9). Effects of hydrogen on growing carbon nanotubes. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2010/10/101005104440.htm
American Institute of Physics. "Effects of hydrogen on growing carbon nanotubes." ScienceDaily. www.sciencedaily.com/releases/2010/10/101005104440.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins