Featured Research

from universities, journals, and other organizations

Microfluidic devices advance 3-D tissue engineering

Date:
October 9, 2010
Source:
Stevens Institute of Technology
Summary:
A new method that generates three-dimensional (3-D) tissue models for studying bacterial infection of orthopedic implants has been developed.

Bone tissue cells and bacteria within the channels were imaged with a microscope and effluent was analyzed for bacteria count.
Credit: Image courtesy of Stevens Institute of Technology

A research team, co-headed by Dr. Woo Lee and Dr. Hongjun Wang of Stevens Institute of Technology, has published a paper describing a new method that generates three-dimensional (3D) tissue models for studying bacterial infection of orthopedic implants. Dr. Joung-Hyun Lee of Stevens, and Dr. Jeffrey Kaplan of the New Jersey Dental School, are co-authors of the research. Their paper, appearing in the journal Tissue Engineering, demonstrates a physiologically relevant approach for studying infection prevention strategies and emulating antibiotic delivery using 3D bone tissues cultured in microfluidic devices.

With over 1 million hip and knee replacement procedures being performed in the United States every year, orthopedic implants have become relatively common. Despite advances in implant design, hospitals have been unable to address bacterial infection, the leading cause of failure in orthopedic implants. A significant barrier to successfully developing infection-fighting drugs or biomaterials has been the inadequacy of laboratory equipment to create clinically relevant environment with traditional in vitro methods.

The researchers seeded 0.02 mL microfluidic channels with osteoblasts and inoculated the channels with Staphylococcus epidermis bacteria, a common pathogen in orthopedic infections. Nutrient solutions were pumped through the channels at a concentration and flow rate mimicking conditions within the human body. Bone tissue cells and bacteria within the channels were imaged with a microscope and effluent was analyzed for bacteria count.

Microfluidic devices, together with finely-tuned dynamic flow settings, have the potential to provide realistic bone tissue models in clinical scenarios. As opposed to the static 2D Petri dish surfaces, microfluidic channels present a realistic environment for cells to grow and adhere in three dimensions. Dynamic fluid motion through the channels -- with solutions potentially carrying antibiotics or other novel drugs -- further mimics real-world conditions previously unrealizable in a lab setting.

The research team is comprised of Dr. Woo Lee, George Meade Bond Professor in Chemical Engineering and Materials Science; Dr. Hongjun Wang, Assistant Professor of Biomedical Engineering; Dr. Joung-Hyun Lee, Research Associate and 2010 Ph.D. graduate of Stevens; and Dr. Jeffrey Kaplan, Associate Professor in the Department of Oral Biology at the New Jersey Dental School. Dr. Joung-Hyun Lee, as the first author of this paper, used her background in microfabrication to discover the conditions for growing bone tissues in the microfluidic device channels while integrating capabilities in the laboratories of Lee, Wang, and Kaplan. This research was sponsored the Nanoscale Interdisciplinary Research Team program of the National Science Foundation (NSF). Also, Dr. Lee and Dr. Wang are principal investigators on a new grant from the NSF Biomaterials program, awarded earlier this year. In this new project, they plan to use the newly developed 3D tissue model to evaluate the efficacy of inkjet-printed infection-preventing biomaterials.

The researchers' published paper is a preliminary demonstration of dynamic microfluidic cell cultures and work continues in the lab to establish successful applications of the technology and processes.


Story Source:

The above story is based on materials provided by Stevens Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. Joung-Hyun Lee, Hongjun Wang, Jeffrey B. Kaplan, Woo Y. Lee. Microfluidic Approach to Create Three-Dimensional Tissue Models for Biofilm-Related Infection of Orthopaedic Implants. Tissue Engineering Part C: Methods, 2010; 100830144718098 DOI: 10.1089/ten.tec.2010.0285

Cite This Page:

Stevens Institute of Technology. "Microfluidic devices advance 3-D tissue engineering." ScienceDaily. ScienceDaily, 9 October 2010. <www.sciencedaily.com/releases/2010/10/101006094053.htm>.
Stevens Institute of Technology. (2010, October 9). Microfluidic devices advance 3-D tissue engineering. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2010/10/101006094053.htm
Stevens Institute of Technology. "Microfluidic devices advance 3-D tissue engineering." ScienceDaily. www.sciencedaily.com/releases/2010/10/101006094053.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins