Featured Research

from universities, journals, and other organizations

Microchip technology rapidly identifies compounds for regrowing nerves in live animals

Date:
October 13, 2010
Source:
Massachusetts Institute of Technology
Summary:
Engineers have now used a new microchip technology to rapidly test potential drugs on tiny worms called C. elegans, which are often used in studies of the nervous system. Using the new technology, scientists rapidly performed laser surgery, delivered drugs and imaged the resulting neuron regrowth in thousands of live animals.

MIT engineers have developed a way to rapidly perform surgery on single nerve cells in the worm C. elegans. The white lines represent axons — long extensions of nerve cells that carry messages to other cells.
Credit: Craig Millman and Yanik Lab

Scientists have long sought the ability to regenerate nerve cells, or neurons, which could offer a new way to treat spinal-cord damage as well as neurological diseases such as Alzheimer's or Parkinson's. Many chemicals can regenerate neurons grown in Petri dishes in the lab, but it's difficult and time-consuming to identify those chemicals that work in live animals, which is critical for developing drugs for humans.

Related Articles


Engineers at MIT have now used a new microchip technology to rapidly test potential drugs on tiny worms called C. elegans, which are often used in studies of the nervous system. Using the new technology, associate professor Mehmet Fatih Yanik and his colleagues rapidly performed laser surgery, delivered drugs and imaged the resulting neuron regrowth in thousands of live animals.

"Our technology helps researchers rapidly identify promising chemicals that can then be tested in mammals and perhaps even in humans," says Yanik. Using this technique, the researchers have already identified one promising class of neuronal regenerators.

The paper will appear in the online edition of the Proceedings of the National Academy of Sciences the week of Oct. 11.

C. elegans is a useful model organism for neuron regeneration because it is optically transparent, and its entire neural network is known. Yanik and colleagues had previously developed a femtosecond laser nanosurgery technique which allowed them to cut and observe regeneration of individual axons -- long extensions of neurons that send signals to neighboring cells. Their femtosecond laser nanosurgery technique uses tightly-focused infrared laser pulses that are shorter than billionth of a second. This allows the laser to penetrate deep into the animals without damaging the tissues on its way, until the laser beam hits its very final target i.e. the axon.

In the PNAS study, the researchers used their microchip technology to rapidly cut the axons of single neurons that sense touch. Moving single worms from their incubation well to an imaging microchip, immobilizing them and performing laser surgery takes only about 20 seconds, which allows thousands of surgeries to be performed in a short period of time.

After laser surgery, each worm is returned to its incubation well and treated with a different chemical compound. C. elegans neurons can partially regrow without help, which allowed Yanik's team to look for drugs that can either enhance or inhibit this regrowth. After two or three days, the researchers imaged each worm to see if the drugs had any effect.

The MIT team found that a compound called staurosporine, which inhibits certain enzymes known as PKC kinases, had the strongest inhibitory effect. In a follow-up study, they tested some compounds that activate these kinases, and found that one of them stimulated regeneration of neurons significantly. Some of Yanik's students are now testing those compounds on neurons derived from human embryonic stem cells.

This microchip technology can also be used to screen compounds for their effects on other diseases such as Alzheimer's, Parkinson's and ALS, says Yanik.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. C. Samara, C. B. Rohde, C. L. Gilleland, S. Norton, S. J. Haggarty, M. F. Yanik. Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration. Proceedings of the National Academy of Sciences, 2010; DOI: 10.1073/pnas.1005372107

Cite This Page:

Massachusetts Institute of Technology. "Microchip technology rapidly identifies compounds for regrowing nerves in live animals." ScienceDaily. ScienceDaily, 13 October 2010. <www.sciencedaily.com/releases/2010/10/101011173253.htm>.
Massachusetts Institute of Technology. (2010, October 13). Microchip technology rapidly identifies compounds for regrowing nerves in live animals. ScienceDaily. Retrieved January 29, 2015 from www.sciencedaily.com/releases/2010/10/101011173253.htm
Massachusetts Institute of Technology. "Microchip technology rapidly identifies compounds for regrowing nerves in live animals." ScienceDaily. www.sciencedaily.com/releases/2010/10/101011173253.htm (accessed January 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, January 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are We Winning The Fight Against Ebola?

Are We Winning The Fight Against Ebola?

Newsy (Jan. 29, 2015) The World Health Organization announced the fight against Ebola has entered its second phase as the number of cases per week has steadily dropped. Video provided by Newsy
Powered by NewsLook.com
Measles Scare Sends 66 Calif. Students Home

Measles Scare Sends 66 Calif. Students Home

AP (Jan. 29, 2015) Officials say 66 students at a Southern California high school have been told to stay home through the end of next week because they may have been exposed to measles and are not vaccinated. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Group Encourages Black Moms to Breastfeed

Group Encourages Black Moms to Breastfeed

AP (Jan. 29, 2015) A grassroots effort is underway in several US cities to encourage more black women to breastfeed their babies by teaching them the benefits of the age-old practice, which is sometimes shunned in African-American communities. (Jan. 29) Video provided by AP
Powered by NewsLook.com
Sugary Drinks May Cause Early Puberty In Girls, Study Says

Sugary Drinks May Cause Early Puberty In Girls, Study Says

Newsy (Jan. 28, 2015) Harvard researchers found that girls who consumed more than 1.5 sugary drinks a day had their first period earlier than those who drank less. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins