Featured Research

from universities, journals, and other organizations

Planar power: Flat sodium-nickel chloride battery could improve performance, cost of energy storage

Date:
October 13, 2010
Source:
DOE/Pacific Northwest National Laboratory
Summary:
A redesign of sodium-nickel chloride batteries promises to overcome some of the obstacles long associated with rechargeable batteries. Replacing their typical cylindrical shape with a flat disc design allows the battery to deliver 30 percent more power at lower temperatures, according to new research. Scientists say these sodium-beta batteries could eventually be used in electricity substations to balance the generation and delivery of wind and solar power on to the grid.

A flat or planar sodium-nickel chloride battery could deliver 30 percent more power at lower temperatures than its cylindrical counterpart, making it a viable alternative to lithium-ion batteries for storing wind and solar power on the electric grid.
Credit: Image courtesy of Pacific Northwest National Laboratory

A redesign of sodium-nickel chloride batteries promises to overcome some of the obstacles long associated with rechargeable batteries. Replacing their typical cylindrical shape with a flat disc design allows the battery to deliver 30 percent more power at lower temperatures, according to work published by the Department of Energy's Pacific Northwest National Laboratory in the October 8 issue of ECS Transactions, a trade journal.

Researchers say these sodium-beta batteries could eventually be used in electricity substations to balance the generation and delivery of wind and solar power on to the grid.

Because the battery's main components include abundant materials such as alumina, sodium chloride and nickel, they are less expensive to manufacture than lithium-ion batteries, and could still offer the performance necessary to compete for consumers' interest. In addition, compared to other battery systems, sodium-beta batteries are safer and can help incorporate renewable energy sources into the electrical system easier.

"This planar sodium battery technology shows potential as an option for integrating more solar and wind power into our electric grid," said Carl Imhoff, electricity infrastructure sector manager at PNNL.

Sodium-beta alumina batteries have been around since the 1960s but their tubular, cylindrical shape does not allow efficient discharge of stored electrochemical energy. This inefficiency causes technical issues associated with operating at high temperatures and raises concern about the cost-effectiveness of the tubular batteries.

Lithium-ion batteries surpassed sodium-beta batteries because they perform better. However, materials for lithium batteries are limited, making them more expensive to produce. Safety also has been a concern for rechargeable lithium batteries because they can be prone to thermal runaway, a condition where the battery continually heats up until it catches fire.

"The PNNL planar battery's flat and thin design has many advantages over traditional, tubular sodium nickel chloride batteries," said PNNL Scientist Xiaochuan Lu, co-author of the paper.

To take advantage of inexpensive materials, the PNNL researchers thought a redesign of the sodium-beta batteries might overcome the technical and cost issues: the cylindrical sodium beta batteries contain a thick, solid electrolyte and cathode that create considerable resistance when the sodium ion travels back and forth between the anode and the cathode while the battery is in use. This resistance reduces the amount of power produced. To lower the resistance, temperature must be elevated. But increasing operation temperature will shorten the battery's lifespan.

The researchers then tested the performance of their redesigned sodium-nickel chloride planar batteries, which look like wafers or large buttons.

The researchers found that a planar design allows for a thinner cathode and a larger surface area for a given cell volume. Because the ions can flow in a larger area and shorter pathway, they experience lower resistance. Next, the battery's design incorporates a thin layer of solid electrolytes, which also lowers the resistance. Because of the decrease of resistance, the battery can afford to be operated at a lower temperature while maintaining a power output 30% more than a similar-sized battery with a cylindrical design.

Finally, the battery's flat components can easily be stacked in a way that produces a much more compact battery, making it an attractive option for large-scale energy storage, such as on the electrical grid.

"Our goal is to get a safer, more affordable battery into the market for energy storage. This development in battery technology gets us one step closer," said Lu.

Researchers at PNNL and EaglePicher LLC received funding from the Advanced Research Projects Agency -- Energy, or ARPA-E, earlier this year to conduct the research, and will work together to improve the battery's design, lifespan and power capacity.

The research was funded by PNNL and by ARPA-E.


Story Source:

The above story is based on materials provided by DOE/Pacific Northwest National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. Xiaochuan Lu, Greg Coffey, Kerry Meinhardt, Vincent Sprenkle, Zhenguo Yang, John P. Lemmon. High Power Planar Sodium-Nickel Chloride Battery. ECS Transactions, 2010; 28 (7) DOI: 10.1149/1.3492326

Cite This Page:

DOE/Pacific Northwest National Laboratory. "Planar power: Flat sodium-nickel chloride battery could improve performance, cost of energy storage." ScienceDaily. ScienceDaily, 13 October 2010. <www.sciencedaily.com/releases/2010/10/101012101259.htm>.
DOE/Pacific Northwest National Laboratory. (2010, October 13). Planar power: Flat sodium-nickel chloride battery could improve performance, cost of energy storage. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2010/10/101012101259.htm
DOE/Pacific Northwest National Laboratory. "Planar power: Flat sodium-nickel chloride battery could improve performance, cost of energy storage." ScienceDaily. www.sciencedaily.com/releases/2010/10/101012101259.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins