Featured Research

from universities, journals, and other organizations

Early role of mitochondria in Alzheimer's Disease may help explain limitations to current beta amyloid hypothesis

Date:
October 13, 2010
Source:
Columbia University Medical Center
Summary:
A new study in mouse models has found that the brain's mitochondria -- the powerhouses of the cell -- are one of the earliest casualties of the disease. The study also found that impaired mitochondria then injure the neurons' synapses, which are necessary for normal brain function.

Before Alzheimer's patients experience memory loss, the brain's neurons have already suffered harm for years.

A new study in mouse models by researchers at Columbia University Medical Center has found that the brain's mitochondria -- the powerhouses of the cell -- are one of the earliest casualties of the disease. The study, which appeared in the online Early Edition of PNAS, also found that impaired mitochondria then injure the neurons' synapses, which are necessary for normal brain function.

"The damage to synapses is one of the earliest events in Alzheimer's disease, but we haven't been able to work out the events that lead to the damage," says the study's principle investigator, ShiDu Yan, M.D., professor of clinical pathology and cell biology in the Taub Institute for Research on Alzheimer's Disease and the Aging Brain at Columbia University Medical Center. "Our new findings, along with previous research, suggest that mitochondrial changes harm the synapses, and that we may be able to slow down Alzheimer's at a very early stage by improving mitochondrial function."

Drugs that restore mitochondria function may be able to treat Alzheimer's disease in its earliest stages. One potential drug, cyclosporin, is already used in organ transplant and autoimmune patients. Cyclosporin suppresses the immune system, but it also blocks amyloid beta (Aβ) peptides-induced mitochondrial injury, Dr. Yan has found in previous studies (Du et al. Nature Medicine, 2008).

Cyclosporin, however, has too many toxic side effects for long term use in other patients. Dr. Yan is currently trying to alter the chemical structure of the drug to reduce its toxicity and to improve its ability to cross the blood brain barrier but preserve its protective effect on Aβ-mediated toxicity.

Most Alzheimer's researchers initially believed that Aβ peptides caused the disease after aggregating together in large, extracellular plaques, a defining feature of Alzheimer's-affected brains. But Dr.Yan's findings, along with those of many other scientists, now point to an earlier role for Aβ peptides inside the brain's neurons.

The mitochondria are damaged, the researchers found, when (Aβ) peptides breach the mitochondria's walls and accumulate on the inside. Even low concentrations of Aβ peptides, equivalent to the levels found in cells years before symptoms appear, impair the mitochondria, particularly mitochondria that supply power to the neuron's synapses.

When filled with Aβ peptides, these synaptic mitochondria were unable to travel down the neurons' long axons to reach, and fuel, the synapse. And the mitochondria that did make the journey failed to provide adequate energy to operate the synapses. Without operating synapses, neurons are unable to function.

"Since cyclosporin is already FDA approved for use in organ transplant and autoimmune patients, this research has the potential to lead to more rapid clinical trials and progress quickly," said Dr. Yan.

Next, Dr. Yan and her team also plan to do more research on the role of tau, which like beta amyloid, is the protein associated most with the plaques and tangles seen at autopsy in the brains of those with Alzheimer's.

This work was supported in part by the National Institute on Aging (NIA) of the National Institutes of Health (NIH), and the Alzheimer's Association.

Authors of the paper are: Heng Du , Lan Guo, Shiqiang Yan, Alexander A. Sosunov, Guy M. McKhann, and Shirley ShiDu Yan.


Story Source:

The above story is based on materials provided by Columbia University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Columbia University Medical Center. "Early role of mitochondria in Alzheimer's Disease may help explain limitations to current beta amyloid hypothesis." ScienceDaily. ScienceDaily, 13 October 2010. <www.sciencedaily.com/releases/2010/10/101013122557.htm>.
Columbia University Medical Center. (2010, October 13). Early role of mitochondria in Alzheimer's Disease may help explain limitations to current beta amyloid hypothesis. ScienceDaily. Retrieved July 31, 2014 from www.sciencedaily.com/releases/2010/10/101013122557.htm
Columbia University Medical Center. "Early role of mitochondria in Alzheimer's Disease may help explain limitations to current beta amyloid hypothesis." ScienceDaily. www.sciencedaily.com/releases/2010/10/101013122557.htm (accessed July 31, 2014).

Share This




More Mind & Brain News

Thursday, July 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Dieting At A Young Age Might Lead To Harmful Health Habits

Dieting At A Young Age Might Lead To Harmful Health Habits

Newsy (July 30, 2014) Researchers say women who diet at a young age are at greater risk of developing harmful health habits, including eating disorders and alcohol abuse. Video provided by Newsy
Powered by NewsLook.com
It's Not Just Facebook: OKCupid Experiments With Users Too

It's Not Just Facebook: OKCupid Experiments With Users Too

Newsy (July 29, 2014) If you've been looking for love online, there's a chance somebody has been looking at how you're looking. Video provided by Newsy
Powered by NewsLook.com
How Your Face Can Leave A Good Or Bad First Impression

How Your Face Can Leave A Good Or Bad First Impression

Newsy (July 29, 2014) Researchers have found certain facial features can make us seem more attractive or trustworthy. Video provided by Newsy
Powered by NewsLook.com
Losing Sleep Leaves You Vulnerable To 'False Memories'

Losing Sleep Leaves You Vulnerable To 'False Memories'

Newsy (July 27, 2014) A new study shows sleep deprivation can make it harder for people to remember specific details of an event. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins