Featured Research

from universities, journals, and other organizations

Unexpected magnetic order among titanium atoms discovered

Date:
October 18, 2010
Source:
DOE/Oak Ridge National Laboratory
Summary:
Theoretical work has provided a key to understanding an unexpected magnetism between two dissimilar materials. The results have special significance for the design of future electronic devices for computations and telecommunications.

Abstract representation of crystalline layers.
Credit: iStockphoto/Xiaoke Ma

Theoretical work done at the Department of Energy's Oak Ridge National Laboratory has provided a key to understanding an unexpected magnetism between two dissimilar materials.

The results, published in Nature Communications, have special significance for the design of future electronic devices for computations and telecommunications, according to co-author Satoshi Okamoto of ORNL's Materials Science and Technology Division. The work was performed at Universidad Complutense de Madrid, synchrotron radiation facilities in France and Japan, University of Bristol and University of Warwick.

"What the team found was an unexpected magnetic order among the titanium atoms at an interface between strontium titanate and lanthanum manganite, which are both insulators in bulk," Okamoto said.

With today's nano-fabrication tools, scientists can develop artificial materials with controlled precision -- almost atom by atom -- of alternating very thin crystalline layers of different materials. The properties of these materials are determined by the structure of interfaces of the different materials and how atoms interact through the interfaces.

Such an interface has traditionally been considered a source of disorder, but in the case of materials such as complex oxides used for this study, the result was something that does not exist naturally in any other material. In order to clarify the electronic properties of such interfaces, the research team made detailed synchrotron X-ray measurements.

"The result was even more surprising as we observed a new type of magnetism in titanium atoms, which are non-magnetic in bulk strontium titanate," Okamoto said.

Furthermore, the researchers were able to manipulate the structure of spin, or magnetism, at atomic scale. The theoretical work by Okamoto provided the key to understand the origin of this novel form of interfacial magnetism and is of particular importance for the development of new spintronic devices such as tunneling magneto-resistance junction, which can be used as a head of a hard-disc drive.

While today's electronic devices are based on the transfer of electrical charge between two materials, a potential alternative, spintronic devices, would also use the magnetic moment, or spin, of electrons in addition to their charge and would therefore be more efficient for sending or storing information as an electric signal.

The research, published Sept. 21, was led by Jacobo Santamaria of Universidad Complutense de Madrid. Funding was provided by the Spanish Ministry of Science and Innovation. Work at ORNL was supported by DOE's Office of Basic Energy Sciences.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. J. Garcia-Barriocanal, J.C. Cezar, F.Y. Bruno, P. Thakur, N.B. Brookes, C. Utfeld, A. Rivera-Calzada, S.R. Giblin, J.W. Taylor, J.A. Duffy, S.B. Dugdale, T. Nakamura, K. Kodama, C. Leon, S. Okamoto, J. Santamaria. Spin and orbital Ti magnetism at LaMnO3/SrTiO3 interfaces. Nature Communications, 2010; 1 (6): 1 DOI: 10.1038/ncomms1080

Cite This Page:

DOE/Oak Ridge National Laboratory. "Unexpected magnetic order among titanium atoms discovered." ScienceDaily. ScienceDaily, 18 October 2010. <www.sciencedaily.com/releases/2010/10/101018151300.htm>.
DOE/Oak Ridge National Laboratory. (2010, October 18). Unexpected magnetic order among titanium atoms discovered. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2010/10/101018151300.htm
DOE/Oak Ridge National Laboratory. "Unexpected magnetic order among titanium atoms discovered." ScienceDaily. www.sciencedaily.com/releases/2010/10/101018151300.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins