Featured Research

from universities, journals, and other organizations

New equation could advance research in solar cell materials

Date:
October 21, 2010
Source:
University of Michigan
Summary:
A groundbreaking new equation could do for organic semiconductors what the Shockley ideal diode equation did for inorganic semiconductors: help to enable their wider adoption.

A groundbreaking new equation developed in part by researchers at the University of Michigan could do for organic semiconductors what the Shockley ideal diode equation did for inorganic semiconductors: help to enable their wider adoption.

Without the Shockley equation, the computers of today would not be possible.

Developed in 1949 by William Shockley, the inventor of the transistor, the Shockley equation describes the relationship between electric current and voltage in inorganic semiconductors such as silicon.

The new equation describes the relationship of current to voltage at the junctions of organic semiconductors -- carbon-rich compounds that don't necessarily come from a biological source, but resemble them. Organic semiconductors present special challenges for researchers because they are more disordered than their inorganic counterparts. But they could enable advanced solar cells, thin and intense OLED (organic light-emitting diode) displays, and high-efficiency lighting.

"The field of organic semiconductor research is still in its infancy. We're not making complicated circuits with them yet, but in order to do that someday, we need to know the precise relationship of current and voltage. Our new equation gives us fundamental insights into how charge moves in this class of materials. From my perspective, it's a very significant advance," said Steve Forrest, the William Gould Dow Collegiate Professor of Electrical Engineering and U-M vice president for research.

Forrest and his doctoral students, Noel Giebink (now at Argonne National Laboratories) and Brian Lassiter, in the U-M Department of Electrical Engineering and Computer Science, contributed to this research. Two papers on the work are published in the current edition of Physical Review B.

About six years ago, researchers in Forrest's lab realized that they could use Shockley's equation to describe the current/voltage relationship in their organic solar cells to a degree.

"It fit nicely if you didn't look too hard," Forrest said.

Their findings were published, and from that time on, many physicists and engineers used the Shockley equation for organic semiconductors even though it didn't describe the physics perfectly. The new equation does.

Forrest says it will allow researchers to better describe and predict the properties of the different organic semiconductors they're working with. And in that way, they'll be able to more efficiently choose which material best suits the needs of the device they're working on.

"People have been investigating organic semiconductors for 70 or 80 years, but we're just entering the world of applications," Forrest said. "This work will help advance the field forward."

The papers are titled, "The Ideal Diode Equation for Organic Heterojunctions. I. Derivation and Application," and "The Ideal Diode Equation for Organic Heterojunctions. II. The Role of Polaron Pair Recombination."

Forrest is also a professor in the departments of Physics, and Materials Science and Engineering. Others contributing to this work are affiliated with Argonne National Laboratory's Center for Nanoscale Materials and Northwestern University.

This research is funded in party by the Department of Energy's Office of Basic Energy Sciences through the U-M Center for Solar and Thermal Energy Conversion, and the Argonne-Northwestern Solar Energy Research Center.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Journal References:

  1. N. Giebink, G. Wiederrecht, M. Wasielewski, S. Forrest. Ideal diode equation for organic heterojunctions. I. Derivation and application. Physical Review B, 2010; 82 (15) DOI: 10.1103/PhysRevB.82.155305
  2. N. Giebink, B. Lassiter, G. Wiederrecht, M. Wasielewski, S. Forrest. Ideal diode equation for organic heterojunctions. II. The role of polaron pair recombination. Physical Review B, 2010; 82 (15) DOI: 10.1103/PhysRevB.82.155306

Cite This Page:

University of Michigan. "New equation could advance research in solar cell materials." ScienceDaily. ScienceDaily, 21 October 2010. <www.sciencedaily.com/releases/2010/10/101020101652.htm>.
University of Michigan. (2010, October 21). New equation could advance research in solar cell materials. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/10/101020101652.htm
University of Michigan. "New equation could advance research in solar cell materials." ScienceDaily. www.sciencedaily.com/releases/2010/10/101020101652.htm (accessed September 2, 2014).

Share This




More Matter & Energy News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins