Featured Research

from universities, journals, and other organizations

Discovery opens new window on development, and maybe potential, of human egg cells

Date:
October 26, 2010
Source:
Brown University
Summary:
Egg cells hold the key to many mysteries about reproduction, and knowing about the genetic makeup of individual eggs is important in fertility treatment. A new method of looking at genetic material egg cells discard offers a way to learn more about individual eggs without destroying them.

Answers are in the stars To perfect a technique for analyzing mRNA in the polar bodies of egg cells, researchers studied starfish, which produce millions of easily available eggs. The image shows a starfish polar body with stained membrane (green) and DNA (blue).
Credit: Carson Lab / Brown University

Egg cells hold the key to many mysteries about reproduction, and knowing about the genetic makeup of individual eggs is important in fertility treatment. A new method of looking at genetic material egg cells discard offers a way to learn more about individual eggs without destroying them.

Related Articles


Fertility procedures such as in vitro fertilization (IVF) require a couple and the doctor to place the risky bet that the multiple eggs they choose to fertilize will produce an embryo that will thrive in the uterus. Researchers cannot biopsy eggs directly because that would destroy them, but a new discovery by professors at Brown University and Women & Infants Hospital could lead to new insights about how eggs develop and ultimately inform judgments about how the embryos they produce will fare. The idea is to examine the genetic material the egg cells discarded when they were first forming, to see which genes they were expressing.

"This opens up a whole new time of life for investigation," said Sandra Carson, professor of obstetrics and gynecology at the Warren Alpert Medical School of Brown University and director of reproductive endocrinology and infertility at Women & Infants.

Oocytes, or eggs, carry half as much genetic material as other cells in the body because a sperm is supposed to donate the other half of the needed DNA. When an oocyte is formed, it casts off a copy of its DNA into a cellular byproduct called a "polar body." For years, fertility doctors have looked at the DNA in polar bodies for insight into whether the egg would thrive, but until now, nobody had ever found any copies of the oocyte's messenger RNA (mRNA), the translated messages of genetic code that are tell-tale signs of which genes are active in a cell. Moreover, no one understood how they could detect mRNA if it was there.

"This research gives us a new technique that might prove useful for looking at how genes are being interpreted by the oocyte," said Peter Klatsky, a research fellow in Carson's lab, who will present the research Oct. 25 at the American Society for Reproductive Medicine annual meeting in Denver. "This may in the future allow us to ask questions about whether an egg is healthy and therefore whether or not that egg, once fertilized will develop into a healthy baby."

Along with Gary Wessel, professor of molecular and cellular biology biochemistry at Brown, Klatsky and Carson reasoned that if each polar body did carry mRNA like the oocyte that spawned it, that would be the next best thing to looking for mRNA in the oocyte itself, which is too destrucive. Polar bodies, they hypothesized, could be a reliable and expendable indicator of gene expression in the egg, at least at one key stage in its development.

"Our hypothesis was that along with the discarded DNA, there is cytoplasm and in that cytoplasm there could be information in the form of mRNA and that information could tell us what's going on in that oocyte," Klatsky said.

In a series of experiments with donated human oocytes and polar bodies, the trio succeeded in becoming the first to detect tiny amounts of mRNA in polar bodies. Furthermore, they were able to show that the abundance of mRNA in each egg cell correlated with their ability to find it in the polar body, suggesting that what's expressed in the egg is present in the polar body.

"Now that we've figured out that you can detect it, the next question is does it tell you something about the health of the egg," Klatsky said.

Supporting cast of stars

Achieving these results was no easy task. The amount of mRNA is so small, on the order of quadrillionths of grams, that the team had to develop a new procedure for amplifying it using polymerase chain reaction, a method of making copies of DNA. A key step was to break with tradition and not try to isolate mRNA to amplify it. Instead, Wessel said, they took steps to retool the polymerase chain reaction process to find the mRNA itself.

To perfect the technique, the team practiced on sea stars (also known as starfish) that Wessel has long studied in his basic biological research on fertilization. At the single-cell level of eggs, sea stars work much like people, Wessel said, but they produce a lot more eggs and polar bodies and those are much easier to study.

"Starfish have been amazingly important for understanding how oocytes develop to become fertilizable," Wessel said. "We can get a few or a dozen eggs from people each month but a starfish has about 10 million eggs."

With an interest in fertility, Wessel has long kept in touch with clinicians working with humans at Women & Infants. Carson directs those efforts -- Klatsky is a fellow in her division -- and so they all forged a collaboration.

Administrators backed them up. One measure of how risky their hypothesis was is that all $100,000 of funding for their research came from internal sources: seed grants awarded from the Office of the Provost at Brown University and from the Center of Excellence in Women's Health at Women & Infants Hospital.

Now that the gamble has paid off in mRNA, the team is pushing ahead to find out whether it can inform both the basic understanding of eggs, and the ultimate promise of improving fertility treatment.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "Discovery opens new window on development, and maybe potential, of human egg cells." ScienceDaily. ScienceDaily, 26 October 2010. <www.sciencedaily.com/releases/2010/10/101025123856.htm>.
Brown University. (2010, October 26). Discovery opens new window on development, and maybe potential, of human egg cells. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2010/10/101025123856.htm
Brown University. "Discovery opens new window on development, and maybe potential, of human egg cells." ScienceDaily. www.sciencedaily.com/releases/2010/10/101025123856.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

Ebola-Hit Sierra Leone's Late Cocoa Leaves Bitter Taste

AFP (Nov. 23, 2014) The arable district of Kenema in Sierra Leone -- at the centre of the Ebola outbreak in May -- has been under quarantine for three months as the cocoa harvest comes in. Duration: 01:32 Video provided by AFP
Powered by NewsLook.com
Don't Fall For Flu Shot Myths

Don't Fall For Flu Shot Myths

Newsy (Nov. 23, 2014) Misconceptions abound when it comes to your annual flu shot. Medical experts say most people older than 6 months should get the shot. Video provided by Newsy
Powered by NewsLook.com
WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins