Featured Research

from universities, journals, and other organizations

Human induced pluripotent stem cells generated to further treatments for lung disease

Date:
October 30, 2010
Source:
Boston University Medical Center
Summary:
Researchers have generated 100 new lines of human induced pluripotent stem cells (iPSC) from individuals with lung diseases, including cystic fibrosis and emphysema. The new stem cell lines could possibly lead to new treatments for these debilitating diseases. The findings demonstrate the first time lung disease-specific iPSC have been created in a lab.

A team of researchers from Boston University's Center for Regenerative Medicine and the Pulmonary Center has generated 100 new lines of human induced pluripotent stem cells (iPSC) from individuals with lung diseases, including cystic fibrosis and emphysema. The new stem cell lines could possibly lead to new treatments for these debilitating diseases.

The findings, which appear in the current issue of Stem Cells, demonstrate the first time lung disease-specific iPSC have been created in a lab.

iPSCs are derived by reprogramming adult cells into a primitive stem cell state. This process results in the creation of cells that are similar to embryonic stem cells in terms of their capability to differentiate into different types of cells, including endoderm cells that can give rise to liver and lung tissue.

"iPSCs solve many major hurdles currently impacting embryonic stem cell research," said Darrell Kotton, the study's lead author and associate professor of medicine and pathology and laboratory medicine at Boston University's School of Medicine (BUSM). iPSCs do not require embryos, and the process used to cultivate iPSCs is easier than the techniques used to obtain embryonic stem cells. iPSCs are genetically identical to the patient's cells and potentially can be transplanted back without rejection.

"In a laboratory dish, these cells have the ability to multiply indefinitely so that researchers have more time to investigate the diseased cell and correct its genes," said Kotton.

The study involved patients with different forms of lung disease -- cystic fibrosis, alpha-1 antitrypsin deficiency-related emphysema, scleroderma (SSc) and sickle cell disease. The patients underwent skin biopsies and donated tissue samples, which the research team used to cultivate adult stem cells. Using a Boston University-patented vector in the form of a virus, named the Stem Cell Cassette (STEMCCA), the researchers were able to reprogram the skin cells into the primitive pluripotent stem cells known as iPSCs.

"The STEMCCA vector is proving invaluable for reprogramming cells from a variety of species, and this is the first report of the 'humanized' version of our vector for use in reprogramming human cells," said Gustavo Mostoslavsky, a co-author of the study and assistant professor of medicine at BUSM. Together Kotton and Mostoslavsky co-direct the new Boston University Center for Regenerative Medicine (CReM).

To test the differentiation power of the iPSCs, the team showed that the stem cells multiplied and could be differentiated into endoderm tissue, the natural precursor cells of the lung, the primary organ destroyed by the diseases cystic fibrosis and emphysema.

"We hope to build a bank of stem cells that could be used to help treat the two most common forms of inherited lung disease, cystic fibrosis and alpha-1 antitrypsin deficiency," said Kotton.

The next step, he said, is to correct the genetic mutations responsible for causing cystic fibrosis, emphysema and other lung diseases.

This study as funded by the National Institutes of Health, the Cystic Fibrosis Foundation and an ARC award from the Evans Center for Interdisciplinary Research at Boston University.


Story Source:

The above story is based on materials provided by Boston University Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Aba Somers, Jyh-Chang Jean, Cesar A. Sommer, Amel Omari, Christopher C. Ford, Jason A. Mills, Lei Ying, Andreia Gianotti Sommer, Jenny M. Jean, Brenden W. Smith, Robert Lafyatis, Marie-France Demierre, Daniel J. Weiss, Deborah L. French, Paul Gadue, George J. Murphy, Gustavo Mostoslavsky, Darrell N. Kotton. Generation of Transgene-Free Lung Disease-Specific Human Induced Pluripotent Stem Cells Using a Single Excisable Lentiviral Stem Cell Cassette. Stem Cells, 2010; 28 (10): 1728 DOI: 10.1002/stem.495

Cite This Page:

Boston University Medical Center. "Human induced pluripotent stem cells generated to further treatments for lung disease." ScienceDaily. ScienceDaily, 30 October 2010. <www.sciencedaily.com/releases/2010/10/101028113612.htm>.
Boston University Medical Center. (2010, October 30). Human induced pluripotent stem cells generated to further treatments for lung disease. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/10/101028113612.htm
Boston University Medical Center. "Human induced pluripotent stem cells generated to further treatments for lung disease." ScienceDaily. www.sciencedaily.com/releases/2010/10/101028113612.htm (accessed September 2, 2014).

Share This




More Health & Medicine News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

U.N. Says Ebola Travel Restrictions Will Cause Food Shortage

Newsy (Sep. 2, 2014) The U.N. says the problem is two-fold — quarantine zones and travel restrictions are limiting the movement of both people and food. Video provided by Newsy
Powered by NewsLook.com
Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins