Featured Research

from universities, journals, and other organizations

Size of protein aggregates, not abundance, drives spread of prion-based disease

Date:
November 1, 2010
Source:
Brown University
Summary:
In a study that challenges the conventional wisdom about infections caused by proteins called prions, researchers report that the size of protein structures, rather than their abundance, determines their transmission among cells.

Less is more Green spots in an infected yeast cell are fluorescent prion structures. The size of prion structures is crucial. Smaller structures move more efficiently between cells, so they are more likely to spread disease.
Credit: Serio Lab / Brown University

Mad Cow disease and its human variant Creutzfeldt -- Jakob disease, which are incurable and fatal, have been on a welcome hiatus from the news for years, but because mammals remain as vulnerable as ever to infectious diseases caused by enigmatic proteins called prions, scientists have taken no respite of their own. In the Oct. 29 edition of the journal Science, researchers at Brown University report a key new insight into how prion proteins -- the infectious agents -- become transmissible: In yeast at least, it is the size of prion complexes, not their number, that determines their efficiency in spreading.

"The dogma in the field was that the misfolding of the protein is sufficient to cause disease, and the clinical course of the infection depended on the amplification of the misfolded protein," said Tricia Serio, associate professor of molecular biology, cell biology and biochemistry. "But over the years in mammals it has become clear that the abundance of misfolded protein is not a good predictor of disease progression. The question is, What else has to happen for you to get the clinical pathology?"

Cells make prion proteins naturally, although biologists do not understand what their normal role is in mammals. When those proteins misfold in cells, they assemble into structures called aggregates, but other proteins, known as chaperones, attempt to break down the aggregates. The rates at which this assembly and disassembly occurs are determined by the shape or conformation that the prion protein has adopted.

"Different conformations of the same prion protein can dramatically alter the spread of pathology and the incubation time of prion diseases," Serio said. "We wanted to learn how."

By combining experiments in yeast cells with mathematical models, the Brown team found that what affects a prions' ability to transmit from cell to cell is the size of the structures into which they assemble, Serio said. If the aggregates become too large, they lose their transmissibility among cells. Prion aggregates that remain small are transmitted with greater efficiency.

"In this paper we changed the transmissibility just by shifting the size," Serio said. "We could change it in either direction."

The proof was plain to see. Postdoctoral researcher Aaron Derdowski monitored differently sized prion aggregates as they moved among cells under the microscope and could see that smaller ones fared better than larger ones. He also kept track of the spread of different prion structures through a genetic analysis of affected cell populations.

In concert with the experimental work, Suzanne Sindi, a postdoctoral researcher with a joint appointment in molecular biology, cell biology and biochemistry and the Center for Computational Molecular Biology, modeled how cells make and spread prion aggregates, providing a novel simulation of the process that she ran on a computing cluster in the Center for Computation and Visualization at Brown. The model that best replicated experimental observations was the one in which aggregate size, rather than abundance, was the key factor.

Implications for disease

Serio says the insights the team has gained in yeast may better explain what others have observed in mammals as well.

"Previously it was not clear why you would have those outcomes," she said.

Ultimately the findings could inform future strategies for developing a treatment for prion infection. If researchers unaware of the importance of aggregate size developed a therapy to hinder prion aggregate formation, they might inadvertently make things worse by producing smaller aggregates, Serio said.

"A more effective strategy might be to control the size of the aggregates," she said, "rather than their presence or absence."

The findings may also relate to other neurodegenerative diseases that depend on misfolding proteins, such as Alzheimer's disease or Parkinson's disease, Serio said.

Other authors on the paper include graduate students Courtney Klaips and Susanne DiSalvo. The National Institutes of Health funded the work.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "Size of protein aggregates, not abundance, drives spread of prion-based disease." ScienceDaily. ScienceDaily, 1 November 2010. <www.sciencedaily.com/releases/2010/10/101028141751.htm>.
Brown University. (2010, November 1). Size of protein aggregates, not abundance, drives spread of prion-based disease. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2010/10/101028141751.htm
Brown University. "Size of protein aggregates, not abundance, drives spread of prion-based disease." ScienceDaily. www.sciencedaily.com/releases/2010/10/101028141751.htm (accessed September 18, 2014).

Share This



More Plants & Animals News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chimp Violence Study Renews Debate On Why They Kill

Chimp Violence Study Renews Debate On Why They Kill

Newsy (Sep. 17, 2014) The study weighs in on a debate over whether chimps are naturally violent or become that way due to human interference in the environment. Video provided by Newsy
Powered by NewsLook.com
Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins