Featured Research

from universities, journals, and other organizations

Miniature human livers created in the lab

Date:
October 31, 2010
Source:
Wake Forest University Baptist Medical Center
Summary:
Researchers have reached an early, but important, milestone in the quest to grow replacement livers in the lab. They are the first to use human liver cells to successfully engineer miniature livers that function -- at least in a laboratory setting -- like human livers. The next step is to see if the livers will continue to function after transplantation in an animal model.

An early milestone in the quest to grow replacement livers in the lab has been achieved. Researchers have used human liver cells to successfully engineer miniature livers that function -- at least in a laboratory setting -- like human livers.
Credit: iStockphoto/Sebastian Kaulitzki

Researchers at the Institute for Regenerative Medicine at Wake Forest University Baptist Medical Center have reached an early, but important, milestone in the quest to grow replacement livers in the lab. They are the first to use human liver cells to successfully engineer miniature livers that function -- at least in a laboratory setting -- like human livers. The next step is to see if the livers will continue to function after transplantation in an animal model.

Related Articles


The ultimate goal of the research, which will be presented on October 31 at the annual meeting of the American Association for the Study of Liver Diseases in Boston, is to provide a solution to the shortage of donor livers available for patients who need transplants. Laboratory-engineered livers could also be used to test the safety of new drugs.

"We are excited about the possibilities this research represents, but must stress that we're at an early stage and many technical hurdles must be overcome before it could benefit patients," said Shay Soker, Ph.D., professor of regenerative medicine and project director. "Not only must we learn how to grow billions of liver cells at one time in order to engineer livers large enough for patients, but we must determine whether these organs are safe to use in patients."

Pedro Baptista, PharmD, Ph.D., lead author on the study, said the project is the first time that human liver cells have been used to engineer livers in the lab. "Our hope is that once these organs are transplanted, they will maintain and gain function as they continue to develop," he said.

To engineer the organs, the scientists used animal livers that were treated with a mild detergent to remove all cells (a process called decellularization), leaving only the collagen "skeleton" or support structure. They then replaced the original cells with two types of human cells: immature liver cells known as progenitors, and endothelial cells that line blood vessels.

The cells were introduced into the liver skeleton through a large vessel that feeds a system of smaller vessels in the liver. This network of vessels remains intact after the decellularization process. The liver was next placed in a bioreactor, special equipment that provides a constant flow of nutrients and oxygen throughout the organ.

After a week in the bioreactor system, the scientists documented the progressive formation of human liver tissue, as well as liver-associated function. They observed widespread cell growth inside the bioengineered organ.

The ability to engineer a liver with animal cells had been demonstrated previously. However, the possibility of generating a functional human liver was still in question.

The researchers said the current study suggests a new approach to whole-organ bioengineering that might prove to be critical not only for treating liver disease, but for growing organs such as the kidney and pancreas. Scientists at the Wake Forest Institute for Regenerative Medicine are working on these projects, as well as many other tissues and organs, and also working to develop cell therapies to restore organ function.

Bioengineered livers could also be useful for evaluating the safety of new drugs. "This would more closely mimic drug metabolism in the human liver, something that can be difficult to reproduce in animal models," said Baptista.

Co-researchers were Dipfen Vyas, B.Sc., Zhan Wang, M.D., and Anthony Atala, M.D., director of the institute.

The abstract, "The Use of Whole Organ Decellularization for the Bioengineering of a Human Vascularized Liver," will be presented on Oct. 31.


Story Source:

The above story is based on materials provided by Wake Forest University Baptist Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Wake Forest University Baptist Medical Center. "Miniature human livers created in the lab." ScienceDaily. ScienceDaily, 31 October 2010. <www.sciencedaily.com/releases/2010/10/101030111057.htm>.
Wake Forest University Baptist Medical Center. (2010, October 31). Miniature human livers created in the lab. ScienceDaily. Retrieved November 22, 2014 from www.sciencedaily.com/releases/2010/10/101030111057.htm
Wake Forest University Baptist Medical Center. "Miniature human livers created in the lab." ScienceDaily. www.sciencedaily.com/releases/2010/10/101030111057.htm (accessed November 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com
Ebola: Life Without School in Guinea

Ebola: Life Without School in Guinea

AFP (Nov. 21, 2014) Following the closure of schools and universities in Guinea because of the Ebola virus, students look for temporary work or gather in makeshift classrooms to catch up on their syllabus. Duration: 02:14 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins