Featured Research

from universities, journals, and other organizations

DNA fingerprinting traces global path of plague

Date:
November 6, 2010
Source:
Northern Arizona University
Summary:
Scientists have traced major plague pandemics such as the Black Death back to their roots using DNA fingerprinting analysis.

Yersinia pestis, bacterium responsible for the Black Plague.
Credit: CDC

An international team of scientists has traced major plague pandemics such as the Black Death back to their roots using DNA fingerprinting analysis.

Related Articles


Researchers from Ireland, China, France, Germany and the United States, including Northern Arizona University's Paul Keim and David Wagner, have turned back the clock to examine the past 10,000 years of global plague disease events. Their findings regarding the plague pathogen, Yersinia pestis, will be published in an upcoming issue of the journal, Nature Genetics.

Keim, director of NAU's Center for Microbial Genetics and Genomics and division director of Translational Genomics Research Institute, said that while the plague is less of a threat to humans than at other periods in history, such as the Middle Ages, the current plague research can be applied to ongoing health threats around the world.

This type of DNA fingerprinting can be used to characterize both natural and nefarious plague outbreaks -- which is crucial when a bacterium is used as a biological weapon.

"This work is more of a model for our control of epidemic diseases such as Salmonella, E. coli and influenza," Keim said. "Plague took advantage of human commercial traffic on a global scale, just as the flu and food-borne diseases do today. Future epidemiologists can learn from this millennium-scale reconstruction of a devastating disease to prevent or control future infectious disease outbreaks."

Tracking the worldwide spread of plague required identifying mutations in as many strains as possible. But transferring live bacterium across country boundaries is highly regulated and difficult due to its potential danger, presenting a challenge to scientists.

To make this research possible, the team devised an innovative research strategy of decentralized experiments where scientists in worldwide locations worked with one or several of 17 complete plague whole genome sequences. By electronically combining all of the research data, the team identified hundreds of variable sites in the DNA while assembling one of the largest dispersed global collections of plague isolates. That data was used to reconstruct the spread of plague pandemics, calculate the age of different waves of outbreak and was linked to descriptions in the historical record to better explain the current existence of plague.

The results serve as a map of how the plague made its way around the globe.

Their collaborative research determined that the plague pathogen originated in or near China where it has evolved and emerged multiple times to cause global pandemics. The international team also identified unique mutations in country-specific plague lineages.

Tracing its evolution, the plague spread over various historical trade routes as early as the 15th century. Chinese admiral and explorer Zheng He's travels may have taken the plague to central Africa. The Silk Road, which led from China to Western Asia and on to Europe as described by Marco Polo, also may have served as an avenue for disease. The latest plague pandemic of the late 1800s still persists today in wild rodents throughout the western United States.

"The plague found its way to the United States in the late 19th and early 20th century through multiple port cities by infected ship-borne rats," said Wagner, assistant professor of biological sciences at NAU. "Based upon DNA variation detected from these comparisons, we determined that the original plague strains that infected the U.S. had their origin in Asia and likely made their way to California via Hawaii."

While plague pandemics are something of the past, the disease has never fully disappeared. The bacterium remains ecologically established in animal populations around the world, and has resurfaced in Africa and Madagascar.

"This study gives one the exciting feeling that we are able to rewind time," said Elisabeth Carniel, director of the National Reference Laboratory and World Health Organization Collaborating Center for Yersinia at the Institut Pasteur in Paris. "However, this should not lead us to consider plague a disease of the past. We are observing its re-emergence in countries where it has been silent for decades. Therefore, far from being extinct, plague is a re-emerging disease."


Story Source:

The above story is based on materials provided by Northern Arizona University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Giovanna Morelli, Yajun Song, Camila J Mazzoni, Mark Eppinger, Philippe Roumagnac, David M Wagner, Mirjam Feldkamp, Barica Kusecek, Amy J Vogler, Yanjun Li, Yujun Cui, Nicholas R Thomson, Thibaut Jombart, Raphael Leblois, Peter Lichtner, Lila Rahalison, Jeannine M Petersen, Francois Balloux, Paul Keim, Thierry Wirth, Jacques Ravel, Ruifu Yang, Elisabeth Carniel, Mark Achtman. Yersinia pestis genome sequencing identifies patterns of global phylogenetic diversity. Nature Genetics, 2010; DOI: 10.1038/ng.705

Cite This Page:

Northern Arizona University. "DNA fingerprinting traces global path of plague." ScienceDaily. ScienceDaily, 6 November 2010. <www.sciencedaily.com/releases/2010/11/101105151012.htm>.
Northern Arizona University. (2010, November 6). DNA fingerprinting traces global path of plague. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2010/11/101105151012.htm
Northern Arizona University. "DNA fingerprinting traces global path of plague." ScienceDaily. www.sciencedaily.com/releases/2010/11/101105151012.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Plants & Animals News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Stray Dog Follows Adventure Racing Team for 6-Day Endurance Race

Buzz60 (Nov. 24, 2014) A Swedish Adventure racing team travels to try and win a world title, but comes home with something way better: a stray dog that joined the team for much of the grueling 430-mile race. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Terrifying Black Seadevil Fish Captured on First-of-Its Kind Video

Terrifying Black Seadevil Fish Captured on First-of-Its Kind Video

Buzz60 (Nov. 24, 2014) An aquarium captures a first-of-its kind video of a notoriously camera-shy fish that’s also not so camera-friendly. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Red Panda Cubs Explore the Bratislava Zoo

Red Panda Cubs Explore the Bratislava Zoo

AFP (Nov. 24, 2014) Four-month old Red Panda twins Pim and Pam still rely on their mother for breast milk at the Bratislava Zoo in Slovakia, but the precocious cubs have begun to branch out to solid foods, as well. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins