Featured Research

from universities, journals, and other organizations

Understanding diabetes at the molecular level

Date:
November 8, 2010
Source:
University of California - Davis
Summary:
Researchers have identified a key step in metabolic pathways linked to diabetes and cancer.

United States and Japanese researchers have identified a key step in metabolic pathways linked to diabetes and cancer. The study on activation of the protein complex TORC 2 was published online in the journal Current Biology Oct. 28.

Related Articles


TORC 2 activates a protein called Akt, which plays a crucial role in how cells respond to insulin, said Kazuo Shiozaki, professor of microbiology in the College of Biological Sciences at UC Davis and senior author on the paper.

Normally, insulin triggers fat and muscle cells to take up sugar from the blood. Patients with type II diabetes make plenty of insulin, but their cells do not respond to it properly. Akt plays a role in the series of steps between insulin exposure and sugar uptake; specifically, it causes proteins that take sugar from the blood to move to the cell surface. Mice that lack the gene for Akt develop diabetes-like symptoms.

"We know that Akt is a key player in diabetes, so we are trying to work upstream from there," Shiozaki said.

Akt also controls cell growth in early embryos and can promote the growth of cancer cells, he added.

Since TORC 2 was first identified in 2005 as a regulator of Akt, researchers have been trying to identify how it is activated, Shiozaki said. The complex appears to be very similar across organisms ranging from humans to yeast.

Shiozaki and colleagues Hisashi Tatebe, Susumu Morigasaki, Shinichi Murayama and Cui Tracy Zeng studied TORC 2 in a yeast. They found that a protein called Ryh1, when bound to another molecule called guanosine triphosphate, is needed to activate TORC 2.

Yeast strains that had a defective form of Ryh1 were more sensitive to temperature or other stressful conditions.

Ryh1 is very similar to a human protein, Rab6. The researchers found that human Rab6 could to some extent replace yeast Ryh1 as an activator of TORC 2 in defective yeast strains.

Rab6 belongs to a class of proteins better known for moving other proteins around within cells. This suggests that Rab6 might play a dual role in insulin signaling, Shiozaki said.

"Our discovery suggests that the early and late steps in insulin response are closely linked to each other," Shiozaki said.

Co-authors Tatebe, Morigasaki and Murayama also hold positions at the Nara Institute of Science and Technology, Japan. The work was funded by grants from the National Institutes of Health, the University of California Cancer Research Coordinating Committee, and the Japan Society for the Promotion of Science. Morigasaki is an international research fellow of the Nara Institute of Science and Technology Global Center of Excellence Program, funded by the Ministry of Education, Culture, Sports, Science and Technology of Japan.


Story Source:

The above story is based on materials provided by University of California - Davis. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hisashi Tatebe, Susumu Morigasaki, Shinichi Murayama, Cui Tracy Zeng, Kazuhiro Shiozaki. Rab-Family GTPase Regulates TOR Complex 2 Signaling in Fission Yeast. Current Biology, 2010; DOI: 10.1016/j.cub.2010.10.026

Cite This Page:

University of California - Davis. "Understanding diabetes at the molecular level." ScienceDaily. ScienceDaily, 8 November 2010. <www.sciencedaily.com/releases/2010/11/101106082607.htm>.
University of California - Davis. (2010, November 8). Understanding diabetes at the molecular level. ScienceDaily. Retrieved February 27, 2015 from www.sciencedaily.com/releases/2010/11/101106082607.htm
University of California - Davis. "Understanding diabetes at the molecular level." ScienceDaily. www.sciencedaily.com/releases/2010/11/101106082607.htm (accessed February 27, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Friday, February 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com
London Show Dissects History of Forensic Science

London Show Dissects History of Forensic Science

AFP (Feb. 25, 2015) Forensic science, which has fascinated generations with its unravelling of gruesome crime mysteries, is being put under the microscope in an exhibition of real criminal investigations in London. Duration: 00:53 Video provided by AFP
Powered by NewsLook.com
Michigan Couple Celebrates Identical Triplets

Michigan Couple Celebrates Identical Triplets

AP (Feb. 25, 2015) A suburban Detroit couple who have two older children are adjusting to life after becoming parents to identical triplets _ a multiple birth a doctor calls rare. (Feb. 25) Video provided by AP
Powered by NewsLook.com
Mayor Says District of Columbia to Go Ahead With Pot Legalization

Mayor Says District of Columbia to Go Ahead With Pot Legalization

Reuters - News Video Online (Feb. 25, 2015) Washington&apos;s mayor says the District of Columbia will move forward with marijuana legalization, despite pushback from Congress. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins