Featured Research

from universities, journals, and other organizations

New cancer drug target: Shutting down enzyme that controls DNA repair could boost effects of traditional chemo drugs

Date:
November 10, 2010
Source:
Massachusetts Institute of Technology
Summary:
Suppressing cancer cells' ability to replicate damaged DNA could dramatically enhance the effectiveness of chemotherapy drugs such as cisplatin, according to new research.

Suppressing cancer cells' ability to replicate damaged DNA could dramatically enhance the effectiveness of chemotherapy drugs such as cisplatin, according to a new pair of papers from MIT biologists.

In studies of mice, the researchers found that slowing down a specific system for tolerating DNA damage not only prolonged survival but also prevented relapsed tumors from becoming resistant to chemotherapy, and made tumors much less likely to spread to other parts of the body.

Two enzymes that play key roles in a cell's response to DNA damage could be an enticing target for new cancer drugs, according to Michael Hemann and Graham Walker, senior authors of the two papers. Their new findings will appear in the Proceedings of the National Academy of Sciences.

Many cancer drugs, including cisplatin, kill cancer cells by damaging their DNA. This damage can impair a cell's ability to copy its DNA before cell division, resulting in cell death. However, cancer cells use enzymes known as translesion DNA polymerases to copy over damaged DNA and prevent the newly replicated DNA from having gaps in its normal sequence of nucleotide bases (the "rungs" of the ladder that forms the DNA double helix).

In these studies, the MIT researchers focused on two proteins, known as Rev3 and Rev1, which are subunits of translesion DNA polymerases.

In one of the PNAS papers, Hemann and Walker studied mice with a particularly aggressive form of lung cancer. Among mice treated with cisplatin, mice whose Rev3 levels were reduced by 60 to 70 percent lived twice as long as mice with the normal amount of Rev3. (Mice with reduced Rev3 lived an average of 22.5 days following cisplatin treatment; mice treated with cisplatin alone lived 11 days.) This is the first alteration shown to sensitize these tumors to front-line chemotherapy.

Translesion polymerases can be highly error-prone and thus introduce mutations into DNA. This can lead to drug-resistant tumors. Consistent with this idea, the researchers showed in a companion study that lymphomas with reduced Rev1 levels did not become resistant to chemotherapy following treatment and were much less aggressive in spreading to other parts of the body.

In that study, the researchers treated mice with the drug cyclophosphamide. At first, the drug was effective in mice whose tumors had normal and reduced Rev1, but in both groups, tumors reappeared after about two weeks. This is similar to the relapse that frequently occurs during the treatment of many human cancers.

Those relapsed tumors were then transplanted into a second group of mice. In the second group, drug treatment was strikingly more effective in mice with reduced Rev1. Those mice survived much longer -- 100 percent of the mice with reduced Rev1 lived for 12 days, whereas some of the mice with normal Rev1 level tumors died in two days and only 40 percent lived for 12 days. These experiments showed that reducing Rev1 levels prevented the tumor cells from acquiring drug resistance and aggressiveness when they relapse so that they can be successfully treated again.

The researchers' discoveries suggest that by inhibiting translesion DNA polymerases, it might be possible to treat difficult cancers that have proven resistant to ordinary chemotherapeutic treatments and also prevent the introduction of new mutations during chemotherapy.

In these studies, the researchers used a technique called RNA interference to block the expression of the genes that code for Rev3 and Rev1, but they were unable to shut off the genes completely.

Walker, an American Cancer Society Research Professor of Biology at MIT, is now looking for drugs that would disrupt the action of these polymerase enzymes. Such drugs might be able to shut down the translesion DNA polymerase system even more effectively than the RNA-interference approach used in these studies and could help to improve the effectiveness of chemotherapy.

Funding was provided by the National Institutes of Health, National Institute of Environmental Health Sciences, and MIT's Center of Environmental Health Sciences.


Story Source:

The above story is based on materials provided by Massachusetts Institute of Technology. Note: Materials may be edited for content and length.


Journal References:

  1. Jason Doles, Trudy G. Oliver, Eleanor R. Cameron, Gerald Hsu, Tyler Jacks, Graham C. Walker, and Michael T. Hemann. REV3 supression sensitizes drug resistnat lung tumors to chemotherapy. Proceedings of the National Academy of Sciences, 2010; (in press)
  2. Kun Xiea, Jason Doles, Michael T. Hemann, and Graham C. Walker. Error-Prone translesion snythesis mediates acquired chemoresistance. Proceedings of the National Academy of Sciences, 2010; (in press)

Cite This Page:

Massachusetts Institute of Technology. "New cancer drug target: Shutting down enzyme that controls DNA repair could boost effects of traditional chemo drugs." ScienceDaily. ScienceDaily, 10 November 2010. <www.sciencedaily.com/releases/2010/11/101108151332.htm>.
Massachusetts Institute of Technology. (2010, November 10). New cancer drug target: Shutting down enzyme that controls DNA repair could boost effects of traditional chemo drugs. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2010/11/101108151332.htm
Massachusetts Institute of Technology. "New cancer drug target: Shutting down enzyme that controls DNA repair could boost effects of traditional chemo drugs." ScienceDaily. www.sciencedaily.com/releases/2010/11/101108151332.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins