Featured Research

from universities, journals, and other organizations

New ultra-clean nanowires have great potential in solar cell technology and electronics

Date:
November 12, 2010
Source:
University of Copenhagen
Summary:
New ultra-clean nanowires will have a central role in the development of new high-efficiency solar cells and electronics on a nanometer scale.

Ultra-clean gallium-arsenid nanowires grown on a silicon substrate gives hope of developing cheap and very effective solar cells.
Credit: Image courtesy of University of Copenhagen

New ultra-clean nanowires produced at the Nano-Science Center, University of Copenhagen will have a central role in the development of new high-efficiency solar cells and electronics on a nanometer scale. PhD student Peter Krogstrup, Niels Bohr Institute, in collaboration with a number of well-known researchers and the company SunFlake A/S, is behind the breakthrough. The new findings have recently been published in the journal Nano Letters.

Nanowires are one-dimensional structures with unique electrical and optical properties -- a kind of building blocks, which researchers use to create nanoscale devices. In recent years, there has been a great deal of research into how nanowires can be used as building blocks in the development of solar cells. One of the challenges is controlling the production of nanowires. The new ultra-clean nanowires are part of the solution. Ultra clean means that the electronic structure is perfectly uniform throughout the nanowires, which is a very important part in obtaining nano-electronic devices of high performance. This is achieved by growing the wires without the use of a metal catalysis like gold, and at the same time having a perfect crystal of only one single structural phase which until now have been impossible for these types of nanowires.

"The ultra-clean wires are grown on a silicon substrate with an extremely thin layer of natural oxide. The element Gallium, which is a part of the nanowire material, reacts with the oxide and makes small holes in the oxide layer, and here the gallium collects into small droplets of a few nanometers in thickness. These droplets capture the element Arsenic -- the other material in the nanowire and through a self-catalytic effect starts the growth of the nanowires without interference from other substances," explains Peter Krogstrup. The breakthrough is the result of a year's work in connection with his PhD.

Control over the cultivation of nanowires

Numerous experiments with different growing conditions have made the researchers wiser to physics behind the formation of the nanowires. A nanowire normally consists of both hexagonal and cubic crystal segments, but the new nanowires only consist of a perfect cubic crystal structure. This means that the path of the electrons through the wire is unaffected and thus suffers less energy loss which leads to a higher efficiency.

"This better understanding of the growing process gives us control over the cultivation of nanowires and the clean wires are the starting point for my current work developing a high efficiency solar cell based on nanowires. With these results we are a good step closer to this goal," explains Peter Krogstrup, pointing out that his nanowires are grown on a silicon substrate.

"The substrate is cheaper than the alternative substrates that many other researchers use. It is important because ultimately it is about getting as much energy as possible for as little cost as possible," explains Peter Krogstrup, whose research is conducted in collaboration with the company SunFlake A/S, which is located at the Nano-Science Center at the University of Copenhagen. The company is working to develop the solar cells of the future based on the nanostructures of Gallium and Arsenic.


Story Source:

The above story is based on materials provided by University of Copenhagen. Note: Materials may be edited for content and length.


Journal Reference:

  1. Peter Krogstrup, Ronit Popovitz-Biro, Erik Johnson, Morten Hannibal Madsen, Jesper Nygård, Hadas Shtrikman. Structural Phase Control in Self-Catalyzed Growth of GaAs Nanowires on Silicon (111). Nano Letters, 2010; 101008135250080 DOI: 10.1021/nl102308k

Cite This Page:

University of Copenhagen. "New ultra-clean nanowires have great potential in solar cell technology and electronics." ScienceDaily. ScienceDaily, 12 November 2010. <www.sciencedaily.com/releases/2010/11/101110101319.htm>.
University of Copenhagen. (2010, November 12). New ultra-clean nanowires have great potential in solar cell technology and electronics. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2010/11/101110101319.htm
University of Copenhagen. "New ultra-clean nanowires have great potential in solar cell technology and electronics." ScienceDaily. www.sciencedaily.com/releases/2010/11/101110101319.htm (accessed August 30, 2014).

Share This




More Matter & Energy News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) — Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) — Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) — Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) — An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins