Featured Research

from universities, journals, and other organizations

Scientists demystify an enzyme responsible for drug and food metabolism

Date:
November 12, 2010
Source:
Penn State
Summary:
Scientists have solved a 40-year-old puzzle about the mysterious process by which a critical enzyme metabolizes nutrients in foods and chemicals in drugs such as Tylenol, caffeine and opiates. The discovery may help future researchers develop a wide range of more efficient and less-expensive drugs, household products and other chemicals.

Espresso pouring into a cup. The critical P450 enzymes break down many commonly used chemicals such as caffeine.
Credit: iStockphoto/Adrian Baras

For the first time, scientists have been able to "freeze in time" a mysterious process by which a critical enzyme metabolizes drugs and chemicals in food. By recreating this process in the lab, a team of researchers has solved a 40-year-old puzzle about changes in a family of enzymes produced by the liver that break down common drugs such as Tylenol, caffeine, and opiates, as well as nutrients in many foods. The breakthrough discovery may help future researchers develop a wide range of more efficient and less-expensive drugs, household products, and other chemicals.

Related Articles


The scientists' findings will be published in the journal Science on 12 November 2010.

Michael Green, an associate professor of chemistry at Penn State University and lead author of the study, explained that scientists have speculated for decades that, during the process of metabolizing chemicals in the human liver, enzymes in the family named P450 pass through a critical chemical phase-change called "Compound I," whereby an oxygen molecule is temporarily added. However, until now, no one had actually seen the process happen or even had proven that it existed. "This phase change happens quickly, and P450 just as quickly changes back to its original state," Green explained. "So the challenge was trapping the enzyme at the exact moment that it went through the Compound I stage." First, Green and his colleagues grew one of the P450 enzymes in E.coli -- bacteria found in the human gut. They then developed a method to cool the enzyme at just the right rate -- one one-thousandth of a second -- to "freeze in time" the formation process of Compound I.

Green also explained that, while all humans have a gene responsible for making the P450 enzymes, different populations of humans vary in which version of the gene they carry, and thus, which version of P450 they produce. Such P450 variations lead to differences in the way people respond to particular drugs. "With a drug such as caffeine, for example, one population of people might be fast metabolizers, while another might metabolize the drug more slowly," Green explained. "Because the risk of caffeine-induced heart attack may be higher in slow metabolizers, the ability to actually take a snapshot of the phase changes of the P450 enzymes could help us to understand better how certain chemicals can affect people in vastly different ways."

Green's P40 research may also aid future scientific discoveries in the field of pharmacology. "Adverse drug-drug interactions are a well-known problem," Green explained. "The answer to why some people have bad interactions could be understood at the level of the P450 enzymes and their state changes. Now that we can see those state changes on a molecular level, a deeper investigation is finally possible."

Green's co-author is Jonathan Little, who was an undergraduate student in Penn State's Department of Chemistry throughout the research study. Little is now a graduate student at the California Institute of Technology.

This research was supported by a grant from the National Science Foundation.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jonathan Rittle and Michael T. Green. Cytochrome P450 Compound I: Capture, Characterization, and C-H Bond Activation Kinetics. Science, 12 November 2010 330: 933-937 DOI: 10.1126/science.1193478

Cite This Page:

Penn State. "Scientists demystify an enzyme responsible for drug and food metabolism." ScienceDaily. ScienceDaily, 12 November 2010. <www.sciencedaily.com/releases/2010/11/101111141810.htm>.
Penn State. (2010, November 12). Scientists demystify an enzyme responsible for drug and food metabolism. ScienceDaily. Retrieved December 18, 2014 from www.sciencedaily.com/releases/2010/11/101111141810.htm
Penn State. "Scientists demystify an enzyme responsible for drug and food metabolism." ScienceDaily. www.sciencedaily.com/releases/2010/11/101111141810.htm (accessed December 18, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, December 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Kids Die While Under Protective Services

Kids Die While Under Protective Services

AP (Dec. 18, 2014) As part of a six-month investigation of child maltreatment deaths, the AP found that hundreds of deaths from horrific abuse and neglect could have been prevented. AP's Haven Daley reports. (Dec. 18) Video provided by AP
Powered by NewsLook.com
UN: Up to One Million Facing Hunger in Ebola-Hit Countries

UN: Up to One Million Facing Hunger in Ebola-Hit Countries

AFP (Dec. 17, 2014) Border closures, quarantines and crop losses in West African nations battling the Ebola virus could lead to as many as one million people going hungry, UN food agencies said on Wednesday. Duration: 00:52 Video provided by AFP
Powered by NewsLook.com
When You Lose Weight, This Is Where The Fat Goes

When You Lose Weight, This Is Where The Fat Goes

Newsy (Dec. 17, 2014) Can fat disappear into thin air? New research finds that during weight loss, over 80 percent of a person's fat molecules escape through the lungs. Video provided by Newsy
Powered by NewsLook.com
Why Your Boss Should Let You Sleep In

Why Your Boss Should Let You Sleep In

Newsy (Dec. 17, 2014) According to research out of the University of Pennsylvania, waking up for work is the biggest factor that causes Americans to lose sleep. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins