Featured Research

from universities, journals, and other organizations

Imaging with neutrons: Magnetic domains shown for the first time in 3-D

Date:
November 25, 2010
Source:
Helmholtz Association of German Research Centres
Summary:
Although they exist in almost every magnetic material, you cannot see them: magnetic domains are microscopically small regions of uniform magnetization. Scientists have now developed a method by which they can image the full spatial structure of magnetic domains -- even deep within materials.

Boundaries of magnetic domains can be computer imaged in three dimensions.
Credit: HZB/Manke, Grothausmann

Although they exist in almost every magnetic material, you cannot see them: magnetic domains are microscopically small regions of uniform magnetization. Scientists have now developed a method by which they can image the full spatial structure of magnetic domains -- even deep within materials.

Up until now, it has only been possible to image magnetic domains in 2 dimensions. Now, for the first time, scientists at Helmholtz-Zentrum Berlin have managed to create 3-dimensional images of these domains deep within magnetic materials.

Every magnetic material is divided into such magnetic domains. Scientists call them "Weiss domains" after physicist Pierre-Ernest Weiss, who predicted their existence theoretically more than a hundred years ago. In 1907, he recognized that the magnetic moments of atoms within a bounded domain are equally aligned.

All pursuit of this theory has so far been limited to two-dimensional images and material surfaces. Accordingly, researchers have only ever been able to see a domain in cross section. Together with colleagues from the German Federal Institute for Materials Research and Testing and the Swiss Paul-Scherrer-Institute, Dr. Ingo Manke and his group at the Institute of Applied Material Research at HZB have developed a method by which they can image the full spatial structure of magnetic domains -- even deep within materials. To do this, special iron-silicon crystals were produced at the Leibniz Institute for Solid State and Materials Research Dresden, for which the research group of Rudolf Schäfer had already developed model representations. Their actual existence has now been proven for the first time. With it, the researchers have solved a decade-old problem in imaging. 

Most magnetic materials consist of a complex network of magnetic domains. The researchers' newly developed method exploits the areas where the domains meet -- the so-called domain walls. Within a domain, all magnetic moments are the same, but the magnetic alignment is different from one domain to another. So, at each domain wall, the direction of the magnetic field changes. The researchers exploit these changes for their radiographic method in which they use not light, but neutrons.

Magnetic fields deflect the neutrons slightly from their flight path, just as water diverts light. An object under water cannot be directly perceived because of this phenomenon; the object appears distorted and in a different location. Similarly, the neutrons pass through domain walls along their path through the magnetic material. At these walls, they are diverted into different directions.

This diversion, however, is only a very weak effect. It is typically invisible in a neutron radiogram, since it is overshadowed by non-diverted rays. The researchers therefore employ several diffraction gratings in order to separate the diverted rays. During a measurement, they rotate the sample and shoot rays through it from all directions. From the separated rays, they can calculate all domain shapes and generate an image of the domain network in its entirety.

Magnetic domains are important for understanding material properties and the natural laws of physics. They also play an important role in everyday life: most notably in storage media such as hard disks, for example, or battery chargers for laptops or electric vehicles. If the domain properties are carefully chosen to minimize electricity loss at the domain walls, the storage medium becomes more efficient.


Story Source:

The above story is based on materials provided by Helmholtz Association of German Research Centres. Note: Materials may be edited for content and length.


Journal Reference:

  1. I. Manke, N. Kardjilov, R. Schäfer, A. Hilger, M. Strobl, M. Dawson, C. Grünzweig, G. Behr, M. Hentschel, C. David, et al. Three-dimensional imaging of magnetic domains. Nature Communications, 1, 125 (23 November 2010) DOI: 10.1038 /ncomms1125

Cite This Page:

Helmholtz Association of German Research Centres. "Imaging with neutrons: Magnetic domains shown for the first time in 3-D." ScienceDaily. ScienceDaily, 25 November 2010. <www.sciencedaily.com/releases/2010/11/101123112137.htm>.
Helmholtz Association of German Research Centres. (2010, November 25). Imaging with neutrons: Magnetic domains shown for the first time in 3-D. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2010/11/101123112137.htm
Helmholtz Association of German Research Centres. "Imaging with neutrons: Magnetic domains shown for the first time in 3-D." ScienceDaily. www.sciencedaily.com/releases/2010/11/101123112137.htm (accessed September 17, 2014).

Share This



More Matter & Energy News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) — Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) — MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) — Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) — New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:  

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile iPhone Android Web
      Follow Facebook Twitter Google+
      Subscribe RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins