Featured Research

from universities, journals, and other organizations

The physics of coffee rings

Date:
November 25, 2010
Source:
American Institute of Physics
Summary:
Researchers have analyzed the stain patterns left behind by coffee droplets on a surface and have presented their "coffee ring" models.

For centuries, intellectuals have met at the ring-stained surfaces of coffee shops to pore over the most pressing problems of the day -- but has anyone ever pondered the coffee rings they left behind? What causes the formation of stain patterns left behind by coffee droplets on a surface?

You might think coffee ring formation, first described quantitatively by Deegan et al in a heavily cited article, is the most widely and ritualistically performed experiment in the world, given the prevalence of caffeine in cultures. But most of us lack the scanning electron microscope and mathematical models to evaluate our stain data properly, or reach meaningful conclusions beyond "Use a coaster."

Now Shreyas Mandre of Brown University, Ning Wu from Colorado School of Mines and L. Mahadevan and Joanna Aizenberg from Harvard University have devised a predictive model that combines laboratory studies of microscopic glass particles in solution with mathematical theories to predict the existence, thickness and length of the banded ring patterns that formed.

Their results, presented November 23 at the American Physical Society Division of Fluid Dynamics meeting in Long Beach, CA, suggest the patterned deposition of particles can be controlled by altering physical parameters such as evaporation and surface tension -- and perhaps one day manipulated to create small-particle tools.

"Controlling the ring deposition process would be useful for creating such things as new microphysics tools operating at a scale where pliers or other traditional tools for moving particles cannot operate," notes Mandre.

The team found that during ring deposition, a particle layer of uniform thickness is deposited if the concentration is above a certain threshold. Below that threshold the deposits form non-uniform bands. The threshold is formed because evaporation at the solid-liquid interface of the rim occurs faster than a replenishing flow of water from the center of the droplet can replace the evaporating rim fluid. This leaves the particles on the rim high, dry -- and deposited.

Exploiting this competition between evaporation and replenishment is the key to controlling the process as a microtool, says Mandre. Potential applications include printing, making industrial coatings, fabricating electronics, and designing new medicines.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Cite This Page:

American Institute of Physics. "The physics of coffee rings." ScienceDaily. ScienceDaily, 25 November 2010. <www.sciencedaily.com/releases/2010/11/101123191303.htm>.
American Institute of Physics. (2010, November 25). The physics of coffee rings. ScienceDaily. Retrieved April 25, 2014 from www.sciencedaily.com/releases/2010/11/101123191303.htm
American Institute of Physics. "The physics of coffee rings." ScienceDaily. www.sciencedaily.com/releases/2010/11/101123191303.htm (accessed April 25, 2014).

Share This



More Matter & Energy News

Friday, April 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Next Stop America for France's TGV?

Next Stop America for France's TGV?

Reuters - Business Video Online (Apr. 24, 2014) — General Electric keeps quiet on reports it's in talks to buy French turbine and train maker Alstom. Ivor Bennett reports on what could be an embarrassing rumour for the French government, with business-friendly reforms proving a hard sell. Video provided by Reuters
Powered by NewsLook.com
Raw: Obama Plays Soccer With Japanese Robot

Raw: Obama Plays Soccer With Japanese Robot

AP (Apr. 24, 2014) — President Obama briefly played soccer with a robot during his visit to Japan on Thursday. The President has been emphasizing technology along with security concerns during his visit. (April 24) Video provided by AP
Powered by NewsLook.com
Obama Encourages Japanese Student-Scientists

Obama Encourages Japanese Student-Scientists

AP (Apr. 24, 2014) — President Obama spoke with student innovators in Japan and urged them to take part in increased opportunities for student exchanges with the US. (April 24) Video provided by AP
Powered by NewsLook.com
UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) — The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins