Featured Research

from universities, journals, and other organizations

Molecular switch controls neuronal migration in the developing brain

Date:
November 28, 2010
Source:
St. Jude Children's Research Hospital
Summary:
Researchers have identified key components of a signaling pathway that controls the departure of neurons from the brain niche where they form and allows these cells to start migrating to their final destination.

Research led by David Solecki, Ph.D., of St. Jude Children's Research Hospital identifies a molecular switch that controls neuronal migration in the developing brain. The study's findings offer insight into the origins of epilepsy, mental retardation and possibly brain tumor metastasis.
Credit: St. Jude Children's Research Hospital

St. Jude Children's Research Hospital investigators have identified key components of a signaling pathway that controls the departure of neurons from the brain niche where they form and allows these cells to start migrating to their final destination. Defects in this system affect the architecture of the brain and are associated with epilepsy, mental retardation and perhaps malignant brain tumors.

The findings provide insight into brain development as well as clues about the mechanism at work in the other developing tissues and organ systems, particularly the epithelial tissue that covers body surfaces. The report appears November 25 in the journal Science online at the Science Express website.

"Neurons are born in germinal zones in the brain, and the places they occupy in the mature brain are sometimes quite a distance away. The cells have to physically move to get to that final destination," said David Solecki, Ph.D., an assistant member of the St. Jude Department of Developmental Neurobiology and the paper's senior author. "If the process is compromised, the result is devastating disruption of brain circuitry that specifically targets children."

In this study, investigators identified not only the molecular complexes that work antagonistically to control departure of brain cells from germinal zones, but also the adhesion molecule that functions as the cells' exit ticket. Solecki and his colleagues showed that high levels of Siah E3 ubiquitin ligase block neuronal departure by tagging a critical part of the cell's migration machinery for degradation through a process known as ubiquitination. Siah's target is Pard3A, which is part of the PAR complex.

By manipulating levels of both Siah and Pard3A, researchers showed that only when neuronal production of Siah falls and Pard3A rises will the cells move out of the germinal zone. The change prompts the cells to alter their migratory path and move toward the location where they will incorporate into the brain's circuitry. The findings mark the first instance of PAR complex activity being regulated by an ubiquitin-targeting protein like Siah.

Investigators used a technique called time-lapse microscopy to directly observe and document the process in the developing cerebellum, the region responsible for balance and fine-tuning body movements. Neurons are the specialized cells that make up the nervous system.

Investigators went on to show that Siah-Pard3A regulates neuronal migration via the adhesion molecule JAM-C, which is short for junctional adhesion molecule C. Researchers demonstrated that silencing JAM-C production in the neurons or preventing JAM-C binding to Pard3A blocked neuronal migration out of the germinal zone.

A similar system at work in epithelial cells relies on JAM-C to keep cells together in a process that also requires the adhesion molecule to bind to the PAR complex, Solecki said. But this is the first report of such mechanisms at work in the developing brain.

Earlier work from the laboratory of Solecki and others showed neurons migrate to their final location by moving along thin fibers produced by brain cells known as glial cells. This study suggests that JAM-C expression on the surface of developing neurons allows the cells to interact with their environment to reach the glial cells. "Without JAM-C, neurons do not move to their final position," he explained.

The researchers developed a fluorescent probe that when combined with time-lapse microscopy made real-time viewing of cell-to-cell binding possible for the first time. "Until now, cell adhesion was difficult to detect and the techniques involved were laborious," Solecki said. "With this approach, it is almost as if the cells are telling us what they are doing. It was very exciting for me to look at a dish of living neurons and see adhesion occur for the first time."

The findings may also offer clues about the spread of malignant brain tumors. Solecki noted that some types of the most common pediatric brain tumor, medulloblastoma, share similarities with immature neurons and seemingly fail to depart the cerebellar germinal zone. Solecki said Siah and Pard3A might provide insight into the mechanisms involved.

The paper's other authors are Jakub Famulski (St. Jude and University of Alberta, Edmonton, Canada); Niraj Trivedi, Danielle Howell, Yiai Tong and Richard Gilbertson (all St. Jude), and Yuan Yang (St. Jude and University of Cambridge, UK).

The study was supported in part by the National Cancer Institute, the March of Dimes and ALSAC.


Story Source:

The above story is based on materials provided by St. Jude Children's Research Hospital. Note: Materials may be edited for content and length.


Journal Reference:

  1. Jakub K. Famulski, Niraj Trivedi, Danielle Howell, Yuan Yang, Yiai Tong, Richard Gilbertson, and David J. Solecki. Siah Regulation of Pard3A Controls Neuronal Cell Adhesion During Germinal Zone Exit. Science, 2010; DOI: 10.1126/science.1198480

Cite This Page:

St. Jude Children's Research Hospital. "Molecular switch controls neuronal migration in the developing brain." ScienceDaily. ScienceDaily, 28 November 2010. <www.sciencedaily.com/releases/2010/11/101125202308.htm>.
St. Jude Children's Research Hospital. (2010, November 28). Molecular switch controls neuronal migration in the developing brain. ScienceDaily. Retrieved August 30, 2014 from www.sciencedaily.com/releases/2010/11/101125202308.htm
St. Jude Children's Research Hospital. "Molecular switch controls neuronal migration in the developing brain." ScienceDaily. www.sciencedaily.com/releases/2010/11/101125202308.htm (accessed August 30, 2014).

Share This




More Health & Medicine News

Saturday, August 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3 Things To Know About The Ebola Outbreak's Progression

3 Things To Know About The Ebola Outbreak's Progression

Newsy (Aug. 29, 2014) Here are three things you need to know about the deadly Ebola outbreak's progression this week. Video provided by Newsy
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Who Could Be Burnt by WHO's E-Cigs Move?

Who Could Be Burnt by WHO's E-Cigs Move?

Reuters - Business Video Online (Aug. 28, 2014) The World Health Organisation has called for the regulation of electronic cigarettes as both tobacco and medical products. Ciara Lee looks at the impact of the move on the tobacco industry. Video provided by Reuters
Powered by NewsLook.com
CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins