Featured Research

from universities, journals, and other organizations

Brain scans show effects of Parkinson's drug

Date:
November 30, 2010
Source:
Washington University School of Medicine
Summary:
Neuroscientists using a new brain imaging technique could see an investigational drug for Parkinson's disease get into a patient's brain and affect blood flow in several key structures, an indicator the drug may be effective. Researchers say in the future, similar brain scans could speed the development of new drugs and help clinicians learn whether established drugs are working.

In this magnetic resonance imaging scan, the colored areas are brain regions that experienced changes in blood flow after patients received the investigational drug SYN115.
Credit: Washington University School of Medicine

Neuroscientists using a new brain imaging technique could see an investigational drug for Parkinson's disease get into a patient's brain and affect blood flow in several key structures, an indicator the drug may be effective.

The study represents the first use of the technique in humans -- called perfusion MRI -- to test a drug still in development, the lead investigator says. In the future, similar brain scans could speed the development of new drugs and help clinicians learn whether established drugs are working, according to the researchers at Washington University School of Medicine in St. Louis.

The research team reports those findings Dec. 1 in The Journal of Neuroscience.

Perfusion MRI allowed the researchers to measure blood flow in the brain and even to determine the precise blood level of the drug, SYN115, needed to affect particular regions of the brain. They were able to demonstrate that the drug may be a viable therapy when combined with levodopa (L-Dopa), currently the most effective treatment for patients with Parkinson's disease.

The study, a Phase 2 clinical trial, used two doses of the investigational drug. Its safety already had been tested in healthy volunteers. The goal was to determine what might be a reasonable dose for a larger clinical trial in Parkinson's disease.

Unlike L-Dopa, which works through the brain's dopamine system, SYN115 interacts with the brain's adenosine A2a receptor. That receptor can modify the effects of the neurotransmitters glutamate and dopamine and is thought to be a potential therapeutic target not only for Parkinson's disease but also for insomnia, pain, drug addiction and depression.

"This study is important because it demonstrates this may be a useful approach for studying investigational drugs," says lead investigator Kevin J. Black, MD. "We were able to determine both that the drug gets into the brain to exert its effects and that it has a larger effect at a higher dose."

Black, a professor of psychiatry, of neurology, of neurobiology and of radiology, and his team used a new, FDA-approved type of perfusion MRI called arterial spin labeling (ASL), which uses MRI scans to measure blood flow in the brain. A similar technique uses positron emission tomography (PET) scans. Older forms of MRI scanning could not provide scientists with similar functional measurements.

Although PET scans can measure many of the same things, a large number of medical centers don't have PET scanners, and depending how it's done, PET may cost more, Black explains. The previous method of measuring blood flow with functional MRI is called BOLD scanning (Blood Oxygen Level Dependent).

"That's a wonderful technique for watching someone's brain respond to a question or a task or to compare blood flow changes over short periods of time," he says. "But it's not very helpful in determining the effects of drugs that might not influence the brain for 30 minutes or an hour. The ASL method works much better at comparing brain activity over that longer time period."

SYN115 probably is not a candidate to replace L-Dopa, Black says, but if used with L-Dopa, he believes it may boost that drug's therapeutic benefit and reduce its side effects. His team tested 21 Parkinson's patients, comparing ASL functional MRI scans among patients who took only L-Dopa and those who took L-Dopa combined with either 20 milligrams or 60 milligrams of SYN115. Patients who received SYN115 experienced decreased blood flow in specific brain structures, with the biggest decreases occurring in the thalamus.

"The nerve cells that send signals to the thalamus are mostly inhibitory in nature," Black says. "So we believe these decreases represent the brain taking its foot off of the brake pedal. The more drug in the system, the less 'braking' influence there is on the thalamus, which would then allow the thalamus to send positive signals to the brain's cortex, where movements are initiated."

Decreases in blood flow were more significant in subjects who had higher blood levels of the investigational drug. More study will be required to learn whether even higher doses might have a bigger influence on brain activity, Black says. It also will be important, he adds, to determine whether the decreased blood flow seen in the MRI scans will ease clinical symptoms of Parkinson's disease, such as tremors, weakness, stiffness and difficulty walking.

But it is clear the drug is influencing brain function, he says. Even if this drug does not have a big impact, the method his team used to study the drug could influence future pharmaceutical research.

"This could shorten the time it takes to get medications to market because you don't need as many patients or as much time to determine whether a drug has an effect in the brain," he says. "This imaging technique could make it possible to significantly shorten the time from drug discovery to the launch of large, clinical studies to learn whether it truly is effective."

And the technique has implications beyond Parkinson's disease.

"One example might be depression," Black says. "Antidepressant drugs work for some people and not for others. The drugs exert many effects within the first two hours, but often they don't begin to relieve depression symptoms for a month or more. Theoretically, this imaging test could determine within hours whether we're going to help patients, rather than waiting weeks to see if the drug is alleviating depression."


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Black KJ, Koller JM, Campbell MC, Gusnard DA, Bandak SI. Quantification of indirect pathway inhibition by the adenosine A2a antagonist SYN115 in Parkinson disease. The Journal of Neuroscience, Vol. 30(48). pp. 16284-16292. Dec. 1, 2010

Cite This Page:

Washington University School of Medicine. "Brain scans show effects of Parkinson's drug." ScienceDaily. ScienceDaily, 30 November 2010. <www.sciencedaily.com/releases/2010/11/101130172002.htm>.
Washington University School of Medicine. (2010, November 30). Brain scans show effects of Parkinson's drug. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2010/11/101130172002.htm
Washington University School of Medicine. "Brain scans show effects of Parkinson's drug." ScienceDaily. www.sciencedaily.com/releases/2010/11/101130172002.htm (accessed September 1, 2014).

Share This




More Health & Medicine News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Get on Your Bike! London Cycling Popularity Soars Despite Danger

Get on Your Bike! London Cycling Popularity Soars Despite Danger

AFP (Sep. 1, 2014) Wedged between buses, lorries and cars, cycling in London isn't for the faint hearted. Nevertheless the number of people choosing to bike in the British capital has doubled over the past 15 years. Duration: 02:27 Video provided by AFP
Powered by NewsLook.com
Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
We've Got Mites Living In Our Faces And So Do You

We've Got Mites Living In Our Faces And So Do You

Newsy (Aug. 30, 2014) A new study suggests 100 percent of adult humans (those over 18 years of age) have Demodex mites living in their faces. Video provided by Newsy
Powered by NewsLook.com
Liberia Continues Fight Against Ebola

Liberia Continues Fight Against Ebola

AFP (Aug. 30, 2014) Authorities in Liberia try to stem the spread of the Ebola epidemic by raising awareness and setting up sanitation units for people to wash their hands. Duration: 00:41 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins