Featured Research

from universities, journals, and other organizations

Discovery could lead to breakthrough for non-small cell lung cancer

Date:
December 3, 2010
Source:
Virginia Commonwealth University
Summary:
A professor of biochemistry and molecular biology has discovered a previously unknown mechanism in non-small cell lung cancer cells that contributes to their ability to maintain and grow tumors.

Research at Virginia Commonwealth University Massey Cancer Center led by Charles E. Chalfant, Ph.D., associate professor of biochemistry and molecular Biology, discovered a previously unknown mechanism in non-small cell lung cancer (NSCLC) cells that contributes to their ability to maintain and grow tumors. Narrowing in on this mechanism could provide a breakthrough for the development of effective therapies for NSCLC and other cancers.

The findings, recently published in Journal of Clinical Investigation, provide the first example of a protein factor regulating the expression of the protein caspase-9, a main player in apoptosis, or programmed cell death. Scientists have known that healthy cells favor caspase-9a, a form of the caspase-9 protein that promotes natural apoptosis. What Chalfant and his research team found is that NSCLC cells favor caspase-9b, which is the anti-apoptotic form of caspase-9 that promotes tumor formation, growth and maintenance. Their further investigation discovered that a protein known as hnRNP L functions as an RNA splicing factor by promoting the expression of caspase-9b through a process known as RNA splicing. While hnRNP L was previously known to have a role in protein expression, its function in relation to cancer biology was unclear until Chalfant's study.

"We're researching an unexplored area of RNA splicing factors in relation to cancer," says Chalfant. "Before this study, there had been very little evidence of an RNA splicing event that results in cancerous tumor development. This study points to caspase-9b as being a very important target in the development of a durable therapy for non-small cell lung cancer."

In mouse models, the researchers used a virus-based targeted gene therapy to reduce the amount of hnRNP L in NSCLC cells. They then observed a lower ratio of caspase-9b to caspase-9a. The result completely stopped the growth of the tumors and had no negative effects on healthy cells. This decrease in the cancer cells' capacity to maintain tumors could make them more susceptible to chemotherapy drugs that typically have little effect on NSCLC.

"Unfortunately, many current therapies for lung cancer are less effective and more toxic than we'd like," says Chalfant. "Lung cancer kills more people than any other cancer, and there is a real need for new cellular targets that are cancer-specific and show results in large numbers of patients regardless of the mutations found in individual tumors. Since caspase-9b is mainly expressed in malignant cells, these findings may provide innovative treatments for non-small cell lung cancer with little to no toxic side effects."

Chalfant collaborated on this work with Davis Massey, M.D., D.D.S., Ph.D., at VCU School of Medicine's Department of Pathology and with researchers at VCU School of Medicine's Department of Biochemistry and Molecular Biology and Department of Physiology, as well as with the University of Colorado Cancer Center; the University of Texas Southwestern Medical Center; and the Hunter Holmes McGuire Veterans Administration Medical Center.

The study was supported by grants from the Veteran's Administration, National Institutes of Health, National Cancer Institute, National Aeronautics and Space Agency and International Association for the Study of Lung Cancer as a Young Investigator Award.



Story Source:

The above story is based on materials provided by Virginia Commonwealth University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Rachel Wilson Goehe, Jacqueline C. Shultz, Charuta Murudkar, Sanja Usanovic, Nadia F. Lamour, Davis H. Massey, Lian Zhang, D. Ross Camidge, Jerry W. Shay, John D. Minna, Charles E. Chalfant. hnRNP L regulates the tumorigenic capacity of lung cancer xenografts in mice via caspase-9 pre-mRNA processing. Journal of Clinical Investigation, 2010; 120 (11): 3923 DOI: 10.1172/JCI43552

Cite This Page:

Virginia Commonwealth University. "Discovery could lead to breakthrough for non-small cell lung cancer." ScienceDaily. ScienceDaily, 3 December 2010. <www.sciencedaily.com/releases/2010/12/101203113241.htm>.
Virginia Commonwealth University. (2010, December 3). Discovery could lead to breakthrough for non-small cell lung cancer. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2010/12/101203113241.htm
Virginia Commonwealth University. "Discovery could lead to breakthrough for non-small cell lung cancer." ScienceDaily. www.sciencedaily.com/releases/2010/12/101203113241.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Artificial Sweetener Could Promote Diabetes

Artificial Sweetener Could Promote Diabetes

Newsy (Sep. 17, 2014) Doctors once thought artificial sweeteners lacked the health risks of sugar, but a new study says they can impact blood sugar levels the same way. Video provided by Newsy
Powered by NewsLook.com
Ebola Vaccine Trial Gets Underway at Oxford University

Ebola Vaccine Trial Gets Underway at Oxford University

AFP (Sep. 17, 2014) A healthy British volunteer is to become the first person to receive a new vaccine for the Ebola virus after US President Barack Obama called for action against the epidemic and warned it was "spiralling out of control." Duration: 01:02 Video provided by AFP
Powered by NewsLook.com
Obesity Rates Steady Even As Americans' Waistlines Expand

Obesity Rates Steady Even As Americans' Waistlines Expand

Newsy (Sep. 17, 2014) Researchers are puzzled as to why obesity rates remain relatively stable as average waistlines continue to expand. Video provided by Newsy
Powered by NewsLook.com
President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins