Featured Research

from universities, journals, and other organizations

Molecular mechanism that causes teens to be less sensitive to alcohol than adults identified

Date:
December 4, 2010
Source:
Baylor University
Summary:
Researchers have known for years that teens are less sensitive than adults to the motor-impairing effects of alcohol, but they do not know exactly what is happening in the brain that causes teens to be less sensitive than adults. But now, neuropsychologists have found the particular cellular and molecular mechanisms underlying the age-dependent effect of alcohol in teens that may cause the reduced motor impairment.

Researchers have known for years that teens are less sensitive than adults to the motor-impairing effects of alcohol, but they do not know exactly what is happening in the brain that causes teens to be less sensitive than adults. But now, neuropsychologists at Baylor University have found the particular cellular and molecular mechanisms underlying the age-dependent effect of alcohol in teens that may cause the reduced motor impairment.

Related Articles


The study appeared on-line in the journal Alcoholism: Clinical and Experimental Research. The study is the first to identify a mechanism underlying one of the main behavioral differences between adolescents and adults in their response to alcohol.

"This study is a significant advancement in understanding why adolescents are insensitive to alcohol and provides some insights into why teens might consequently consume alcohol to dangerous levels," said Dr. Doug Matthews, a research scientist at Baylor who led the study. "This differential effect is not due to different blood-alcohol levels. Such reduced sensitivity in teens is troublesome considering that binge and heavy alcohol consumption increases throughout human adolescence and peaks at 21 to 25 years of age. Therefore understanding the mechanisms that underlie the reduced sensitivity to alcohol during adolescence is critical."

Specifically, the Baylor researchers found the firing rate of a particular neuron called the cerebellar Purkinje neuron was insensitive to large alcohol doses in adolescent animal models, while the firing rate of those neurons was significantly depressed in adults. The spontaneous firing rate in adults from Purkinje neurons decreased approximately 20 percent, which researchers said indicates potential motor impairment. Adolescents, on the other hand, did show a slight motor impairment, however the firing rates from adolescent Purkinje neurons did not dramatically change in response to alcohol, and in fact showed a five percent increase in firing rate.

The Baylor researchers said this alcohol-induced reduction of spontaneous Purkinje neuron firing rates in adults could explain the greater sensitivity to alcohol's motor impairing effects in adults compared to adolescents. However, there are likely to be contributions from other systems involved to cause thee different behavioral effects.


Story Source:

The above story is based on materials provided by Baylor University. Note: Materials may be edited for content and length.


Cite This Page:

Baylor University. "Molecular mechanism that causes teens to be less sensitive to alcohol than adults identified." ScienceDaily. ScienceDaily, 4 December 2010. <www.sciencedaily.com/releases/2010/12/101203165821.htm>.
Baylor University. (2010, December 4). Molecular mechanism that causes teens to be less sensitive to alcohol than adults identified. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2010/12/101203165821.htm
Baylor University. "Molecular mechanism that causes teens to be less sensitive to alcohol than adults identified." ScienceDaily. www.sciencedaily.com/releases/2010/12/101203165821.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tryptophan Isn't Making You Sleepy On Thanksgiving

Tryptophan Isn't Making You Sleepy On Thanksgiving

Newsy (Nov. 27, 2014) — Tryptophan, a chemical found naturally in turkey meat, gets blamed for sleepiness after Thanksgiving meals. But science points to other culprits. Video provided by Newsy
Powered by NewsLook.com
Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins