Featured Research

from universities, journals, and other organizations

Self-healing autonomous material comes to life

Date:
December 7, 2010
Source:
American Institute of Physics
Summary:
Researchers have created a material that may be able to sense and heal damage, such as cracking in a fiber reinforced composite. The aim of developing "autonomous adaptive structures" is to mimic the ability of biological systems such as bone to sense the presence of damage, halt its progression and regenerate itself.

Thermal image capturing the temperature gradient created by the photo-thermal heating method.
Credit: Image courtesy of American Institute of Physics

You've seen it in movies: the human-like, robot assassin quickly regenerates its structure after being damaged beyond recognition. This "Terminator" scenario is becoming less far-fetched as recent advances in structural health monitoring systems have led to a variety of ways to identify damage to a structural system.

Now, in the Journal of Applied Physics, researchers at Arizona State University have created a material that may be able to not only sense damage in structural materials, such as cracking in a fiber-reinforced composite, but to even heal it. The aim of developing "autonomous adaptive structures" is to mimic the ability of biological systems such as bone to sense the presence of damage, halt its progression, and regenerate itself.

The novel autonomous material developed by Henry Sodano and colleagues uses "shape-memory" polymers with an embedded fiber-optic network that functions as both the damage detection sensor and thermal stimulus delivery system to produce a response that mimics the advanced sensory and healing traits shown in biological systems. An infrared laser transmits light through the fiber-optic system to locally heat the material, stimulating the toughening and healing mechanisms.

The material system is capable of increasing the toughness of a specimen by 11 times. After toughening the specimen, the crack can be closed using the shape-memory effect to recover an unprecedented 96 percent of the object's original strength. In fact, after the crack is closed, the new material is nearly five times as tough as the original specimen, even though it has been strained past its original failure strain point by a factor of four. The material and healing process can be applied while the structure is in operation, which has not been possible with existing healing techniques.


Story Source:

The above story is based on materials provided by American Institute of Physics. Note: Materials may be edited for content and length.


Journal Reference:

  1. Michael E. Garcia, Yirong Lin, Henry A. Sodano. Autonomous materials with controlled toughening and healing. Journal of Applied Physics, 2010; 108 (9): 093512 DOI: 10.1063/1.3499351

Cite This Page:

American Institute of Physics. "Self-healing autonomous material comes to life." ScienceDaily. ScienceDaily, 7 December 2010. <www.sciencedaily.com/releases/2010/12/101207091813.htm>.
American Institute of Physics. (2010, December 7). Self-healing autonomous material comes to life. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2010/12/101207091813.htm
American Institute of Physics. "Self-healing autonomous material comes to life." ScienceDaily. www.sciencedaily.com/releases/2010/12/101207091813.htm (accessed August 27, 2014).

Share This




More Matter & Energy News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Australian Airlines Relax Phone Ban Too

Australian Airlines Relax Phone Ban Too

Reuters - Business Video Online (Aug. 26, 2014) Qantas and Virgin say passengers can use their smartphones and tablets throughout flights after a regulator relaxed a ban on electronic devices during take-off and landing. As Hayley Platt reports the move comes as the two domestic rivals are expected to post annual net losses later this week. Video provided by Reuters
Powered by NewsLook.com
Hurricane Marie Brings Big Waves to California Coast

Hurricane Marie Brings Big Waves to California Coast

Reuters - US Online Video (Aug. 26, 2014) Huge waves generated by Hurricane Marie hit the Southern California coast. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com
Chinese Researchers Might Be Creating Supersonic Submarine

Chinese Researchers Might Be Creating Supersonic Submarine

Newsy (Aug. 26, 2014) Chinese researchers have expanded on Cold War-era tech and are closer to building a submarine that could reach the speed of sound. Video provided by Newsy
Powered by NewsLook.com
Breakingviews: India Coal Strained by Supreme Court Ruling

Breakingviews: India Coal Strained by Supreme Court Ruling

Reuters - Business Video Online (Aug. 26, 2014) An acute coal shortage is likely to be aggravated as India's supreme court declared government coal allocations illegal, says Breakingviews' Peter Thal Larsen. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins