Featured Research

from universities, journals, and other organizations

Demise of large satellite may have led to the formation of Saturn’s rings and inner moons

Date:
December 31, 2010
Source:
Southwest Research Institute
Summary:
Simulations may explain how Saturn's majestic rings and icy inner moons formed following the collision of a Titan-sized satellite with the planet, according to a new article.

Simulations performed at Southwest Research Institute may explain how Saturn's majestic rings and icy inner moons formed following the collision of a Titan-sized satellite with the planet, according to a paper published in Nature magazine's Dec. 12 Advance Online Publication.

Saturn's rings are at present 90 to 95 percent water ice. Because dust and debris from rocky meteoroids have polluted the rings, the rings are believed to have consisted of pure ice when they formed. This composition is unusual compared to the approximately half-ice and half-rock mixture expected for materials in the outer Solar System. Similarly, the low densities of Saturn's inner moons show that they too are, as a group, unusually rich in ice.

The previous leading ring origin theory suggests the rings formed when a small satellite was disrupted by an impacting comet. "This scenario would have likely resulted in rings that were a mixture of rock and ice, rather than the ice-rich rings we see today," says the paper's author, Dr. Robin M. Canup, associate vice president of the SwRI Planetary Science Directorate in Boulder.

The new theory links the formation of the rings to the formation of Saturn's satellites. While Jupiter has four large satellites, Saturn has only one, Titan. Previous work suggests that multiple Titan-sized satellites originally formed at Saturn, but that those orbiting interior to Titan were lost as their orbits spiraled into the planet.

As the final lost satellite neared Saturn, heating caused by the flexing of its shape by the planet's gravity would cause its ice to melt and its rock to sink to its center. Canup uses numerical simulations to show that as such a satellite crosses the region of the current B ring, planetary tidal forces strip material from its outer icy layers, while its rocky core remains intact and eventually collides with the planet. This produces an initial ice ring that is much more massive than Saturn's current rings.

Over time, collisions in the ring cause it to spread radially and decrease in mass. Inwardly spreading ring material is lost, while material spreading past the ring's outer edge accumulates into icy moons with estimated masses consistent with the inner moons seen today.

"The new model proposes that the rings are primordial, formed from the same events that left Titan as Saturn's sole large satellite, " says Canup. "The implication is that the rings and the Saturnian moons interior to and including Tethys share a coupled origin, and are the last remnants of a lost companion satellite to Titan."

During its extended mission, the Cassini spacecraft will measure the rings' current mass and will indirectly measure the pollution rate of the rings. This should provide an improved estimate of the rings' age and a test of the new ring origin model.

NASA's Outer Planets Research Program funded this research.


Story Source:

The above story is based on materials provided by Southwest Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Robin M. Canup. Origin of Saturn’s rings and inner moons by mass removal from a lost Titan-sized satellite. Nature, 2010; DOI: 10.1038/nature09661

Cite This Page:

Southwest Research Institute. "Demise of large satellite may have led to the formation of Saturn’s rings and inner moons." ScienceDaily. ScienceDaily, 31 December 2010. <www.sciencedaily.com/releases/2010/12/101212145224.htm>.
Southwest Research Institute. (2010, December 31). Demise of large satellite may have led to the formation of Saturn’s rings and inner moons. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2010/12/101212145224.htm
Southwest Research Institute. "Demise of large satellite may have led to the formation of Saturn’s rings and inner moons." ScienceDaily. www.sciencedaily.com/releases/2010/12/101212145224.htm (accessed September 2, 2014).

Share This




More Space & Time News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: NASA Captures Solar Flare

Raw: NASA Captures Solar Flare

AP (Sep. 1, 2014) NASA reported the sun emitted a mid-level solar flare, on August 24th. NASA's Solar Dynamics Observatory captured the images of the flare, which erupted on the left side of the sun. (Sept. 1) Video provided by AP
Powered by NewsLook.com
Space Shuttle Discovery's Legacy, 30 Years Later

Space Shuttle Discovery's Legacy, 30 Years Later

Newsy (Aug. 30, 2014) The space shuttle Discovery launched for the very first time 30 years ago. Here's a look back at its legacy. Video provided by Newsy
Powered by NewsLook.com
Experiment Tests Whether Universe Is Actually A Hologram

Experiment Tests Whether Universe Is Actually A Hologram

Newsy (Aug. 27, 2014) Researchers at Fermilab are using a device called "The Holometer" to test whether our universe is actually a 2-D hologram that just seems 3-D. Video provided by Newsy
Powered by NewsLook.com
SpaceX’s Falcon 9 Rocket Explodes After Liftoff

SpaceX’s Falcon 9 Rocket Explodes After Liftoff

Newsy (Aug. 23, 2014) The private spaceflight company says it is preparing a thorough investigation into Friday's mishap. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins