Featured Research

from universities, journals, and other organizations

Protein restores learning, memory in Alzheimer's mouse model

Date:
December 14, 2010
Source:
University of Texas Health Science Center at San Antonio
Summary:
New studies point to a way to reverse effects of the memory-robbing Alzheimer's disease.

Scientists at the UT Health Science Center San Antonio restored learning and memory in an Alzheimer's disease mouse model by increasing a protein called CBP. Salvatore Oddo, Ph.D., of the university's Department of Physiology and Barshop Institute for Longevity and Aging Studies, said this is the first proof that boosting CBP, which triggers the production of other proteins essential to creating memories, can reverse Alzheimer's effects.

The finding, reported this week in Proceedings of the National Academy of Sciences, provides a novel therapeutic target for development of Alzheimer's medications, Dr. Oddo said. Alzheimer's and other dementias currently impair 5.3 million Americans, including more than 340,000 Texans.

Alzheimer's pathology

In patients with Alzheimer's disease, accumulation of a protein called amyloid-β (Aβ) blocks memory formation by destroying synapses, the sites where neurons share information. Autopsies of the brains of some Alzheimer's patients also reveal tangles caused by a protein called tau.

Enhancing CBP does not alter the Aβ or tau physiology but operates on a different recovery mechanism: It restores activity of a protein called CREB and increases levels of another protein called brain-derived neurotrophic factor (BDNF).

Enhancing signals

"One way by which CBP could work is by setting off a domino effect among proteins that carry signals from the synapse to the nucleus of the neuron," Dr. Oddo said. "Getting signals to the nucleus is necessary for long-term memory."

A viral vehicle

The research team engineered a harmless virus to deliver CBP to the hippocampus in the temporal lobe. The hippocampus is the brain's key structure for learning and memory. At 6 months of age, when the CBP delivery took place, the specially bred mice were at the onset of Alzheimer's-like deficits. Learning and memory were evaluated in a water maze that required mice to remember the location of an exit platform. The mice treated with CBP were compared to diseased mice that received only placebo and to normal, healthy control mice.

Identical to healthy mice

Efficiency in escaping the maze served as signs of learning and memory. In the Alzheimer's mouse model, performance of the Alzheimer's mice treated with enhanced CBP was identical to the healthy mice, whereas the placebo-treated Alzheimer's mice lagged far behind.


Story Source:

The above story is based on materials provided by University of Texas Health Science Center at San Antonio. Note: Materials may be edited for content and length.


Journal Reference:

  1. Antonella Caccamo, Monica A. Maldonado, Alex F. Bokov, Smita Majumder and Salvatore Oddo. CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer's disease. PNAS, December 13, 2010 DOI: 10.1073/pnas.1012851108

Cite This Page:

University of Texas Health Science Center at San Antonio. "Protein restores learning, memory in Alzheimer's mouse model." ScienceDaily. ScienceDaily, 14 December 2010. <www.sciencedaily.com/releases/2010/12/101213151401.htm>.
University of Texas Health Science Center at San Antonio. (2010, December 14). Protein restores learning, memory in Alzheimer's mouse model. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2010/12/101213151401.htm
University of Texas Health Science Center at San Antonio. "Protein restores learning, memory in Alzheimer's mouse model." ScienceDaily. www.sciencedaily.com/releases/2010/12/101213151401.htm (accessed September 17, 2014).

Share This



More Health & Medicine News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Obama Orders Military Response to Ebola

Obama Orders Military Response to Ebola

AP (Sep. 16, 2014) Calling the Ebola outbreak in West Africa a potential threat to global security, President Barack Obama is ordering 3,000 U.S. military personnel to the stricken region amid worries that the outbreak is spiraling out of control. (Sept. 16) Video provided by AP
Powered by NewsLook.com
UN: 20,000 Could Be Infected With Ebola by Year End

UN: 20,000 Could Be Infected With Ebola by Year End

AFP (Sep. 16, 2014) Nearly $1.0 billion dollars is needed to fight the Ebola outbreak raging in west Africa, the United Nations say, warning that 20,000 could be infected by year end. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Obama: Ebola Outbreak Threat to Global Security

Obama: Ebola Outbreak Threat to Global Security

AP (Sep. 16, 2014) President Obama is ordering U.S. military personnel to West Africa to deal with the Ebola outbreak, which is he calls a potential threat to global security. (Sept. 16) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins