Featured Research

from universities, journals, and other organizations

Compact brilliant laser light sources developed

Date:
December 16, 2010
Source:
Forschungsverbund Berlin e.V. (FVB)
Summary:
Due to laser light sources captivatingly true pictures can be generated. Such sources already demonstrate their capability in flight simulators and in large-scale projections. However, they are usually oversized for further applications. Scientists just recently managed to develop particularly compact brilliant laser light sources, which enable significantly smaller systems for display technology.

Due to laser light sources captivatingly true pictures can be generated. Such sources already demonstrate their capability in flight simulators and in large-scale projections. However, they are usually oversized for further applications. Scientists from the Ferdinand-Braun-Institut (FBH) just recently managed to develop particularly compact brilliant laser light sources, which enable significantly smaller systems for display technology.

"This rollercoaster ride made me feel really sick," remembers Dr. Katrin Paschke, head of a junior research group at the FBH -- although she has not even been sitting in the rollercoaster, but watching the ride in a film. The particularly realistic pictures were produced by a specific projection technology. "With laser projection ninety percent of the colour space of the human eye can be covered. Thus, the image quality is fascinating. "Today's flat screens manage only about fifty percent," explains Paschke.

The major disadvantage of laser projectors so far is their vast dimensions. In flight simulators for example, laser systems the size of a cabinet are used -- a fact that considerably limits applications and makes one easily understand why the technology is not yet ready for home television sets. Scientists therefore develop increasingly smaller devices, which need to achieve high optical output powers in the Watt range and an excellent beam quality at the same time.

Katrin Paschke and her team have developed red laser light sources within InnoProfile, an initiative funded by the German Federal Ministry of Education and Research, and a development contract with LDT Laser Display Technology GmbH from Jena. LDT projects to integrate these laser modules, which have been miniaturized to a unit the size of a matchbox, into their next-generation laser projectors.

Into their red emitting micro modules, FBH's scientists combined several elements such as laser chip and micro optics. The red light is generated directly by rice grain sized semiconductor lasers. As high output powers are needed for display systems, one of the challenges was to reduce the extraordinary high power densities to prevent the laser material from melting. Consequently, power should not concentrate on an aperture being too small. FBH has developed a laser chip, which trapezoidally broadens toward the opening: A laser beam with good beam quality can thus be generated compactly and enlarges then in the tapered section.

As a result, the high output powers can be spread over a comparatively broad opening of several hundred micro meters. In order to make the radiation of the laser modules usable for laser projection, the beam has to be collimated afterwards, which means it has to be adjusted in parallel. As a matter of fact, the beam a semiconductor laser usually emits is broadening with increasing distance and thus loses intensity. As the entire module should not exceed the size of a matchbox, custom-built micro optics (approx. 1 x 1 x 1 mm³) were used. They had to be positioned and fixed with highest precision of under one micro meter. Additionally, an elaborated thermal management ensures, that the diode lasers can be operated under optimum thermal conditions of below 15°C. To dissipate excessive heat, FBH's scientists use specifically manufactured industrial diamonds.

With these tiny little brilliant laser light sources, Katrin Paschke and her team do not only want to make sure, that pin sharp pictures are generated in planetaria and flight simulators. Life-like pictures shall also be delivered into consumer's living rooms. Katrin Paschke expects even more for the entertainment sector: "Some day holograms will leap through our homes."


Story Source:

The above story is based on materials provided by Forschungsverbund Berlin e.V. (FVB). Note: Materials may be edited for content and length.


Cite This Page:

Forschungsverbund Berlin e.V. (FVB). "Compact brilliant laser light sources developed." ScienceDaily. ScienceDaily, 16 December 2010. <www.sciencedaily.com/releases/2010/12/101216073302.htm>.
Forschungsverbund Berlin e.V. (FVB). (2010, December 16). Compact brilliant laser light sources developed. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2010/12/101216073302.htm
Forschungsverbund Berlin e.V. (FVB). "Compact brilliant laser light sources developed." ScienceDaily. www.sciencedaily.com/releases/2010/12/101216073302.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) — China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins