Featured Research

from universities, journals, and other organizations

Compact brilliant laser light sources developed

Date:
December 16, 2010
Source:
Forschungsverbund Berlin e.V. (FVB)
Summary:
Due to laser light sources captivatingly true pictures can be generated. Such sources already demonstrate their capability in flight simulators and in large-scale projections. However, they are usually oversized for further applications. Scientists just recently managed to develop particularly compact brilliant laser light sources, which enable significantly smaller systems for display technology.

Due to laser light sources captivatingly true pictures can be generated. Such sources already demonstrate their capability in flight simulators and in large-scale projections. However, they are usually oversized for further applications. Scientists from the Ferdinand-Braun-Institut (FBH) just recently managed to develop particularly compact brilliant laser light sources, which enable significantly smaller systems for display technology.

"This rollercoaster ride made me feel really sick," remembers Dr. Katrin Paschke, head of a junior research group at the FBH -- although she has not even been sitting in the rollercoaster, but watching the ride in a film. The particularly realistic pictures were produced by a specific projection technology. "With laser projection ninety percent of the colour space of the human eye can be covered. Thus, the image quality is fascinating. "Today's flat screens manage only about fifty percent," explains Paschke.

The major disadvantage of laser projectors so far is their vast dimensions. In flight simulators for example, laser systems the size of a cabinet are used -- a fact that considerably limits applications and makes one easily understand why the technology is not yet ready for home television sets. Scientists therefore develop increasingly smaller devices, which need to achieve high optical output powers in the Watt range and an excellent beam quality at the same time.

Katrin Paschke and her team have developed red laser light sources within InnoProfile, an initiative funded by the German Federal Ministry of Education and Research, and a development contract with LDT Laser Display Technology GmbH from Jena. LDT projects to integrate these laser modules, which have been miniaturized to a unit the size of a matchbox, into their next-generation laser projectors.

Into their red emitting micro modules, FBH's scientists combined several elements such as laser chip and micro optics. The red light is generated directly by rice grain sized semiconductor lasers. As high output powers are needed for display systems, one of the challenges was to reduce the extraordinary high power densities to prevent the laser material from melting. Consequently, power should not concentrate on an aperture being too small. FBH has developed a laser chip, which trapezoidally broadens toward the opening: A laser beam with good beam quality can thus be generated compactly and enlarges then in the tapered section.

As a result, the high output powers can be spread over a comparatively broad opening of several hundred micro meters. In order to make the radiation of the laser modules usable for laser projection, the beam has to be collimated afterwards, which means it has to be adjusted in parallel. As a matter of fact, the beam a semiconductor laser usually emits is broadening with increasing distance and thus loses intensity. As the entire module should not exceed the size of a matchbox, custom-built micro optics (approx. 1 x 1 x 1 mm³) were used. They had to be positioned and fixed with highest precision of under one micro meter. Additionally, an elaborated thermal management ensures, that the diode lasers can be operated under optimum thermal conditions of below 15°C. To dissipate excessive heat, FBH's scientists use specifically manufactured industrial diamonds.

With these tiny little brilliant laser light sources, Katrin Paschke and her team do not only want to make sure, that pin sharp pictures are generated in planetaria and flight simulators. Life-like pictures shall also be delivered into consumer's living rooms. Katrin Paschke expects even more for the entertainment sector: "Some day holograms will leap through our homes."


Story Source:

The above story is based on materials provided by Forschungsverbund Berlin e.V. (FVB). Note: Materials may be edited for content and length.


Cite This Page:

Forschungsverbund Berlin e.V. (FVB). "Compact brilliant laser light sources developed." ScienceDaily. ScienceDaily, 16 December 2010. <www.sciencedaily.com/releases/2010/12/101216073302.htm>.
Forschungsverbund Berlin e.V. (FVB). (2010, December 16). Compact brilliant laser light sources developed. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2010/12/101216073302.htm
Forschungsverbund Berlin e.V. (FVB). "Compact brilliant laser light sources developed." ScienceDaily. www.sciencedaily.com/releases/2010/12/101216073302.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) — An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins