Featured Research

from universities, journals, and other organizations

Electric current moves magnetic vortices: With the help of neutrons, physicists discover new ways to save data

Date:
December 21, 2010
Source:
Technische Universitaet Muenchen
Summary:
One of the requirements to keep trends in computer technology on track -- to be ever faster, smaller, and more energy-efficient -- is faster writing and processing of data. New results could point the way to a solution. Physicists set a lattice of magnetic vortices in a material in motion using electric current almost a million times weaker than in earlier studies.

This illustration shows how magnetic vortices in manganese silicon form a regular lattice.
Credit: Copyright Christian Pfleidere, TU Muenchen.

One of the requirements to keep trends in computer technology on track -- to be ever faster, smaller, and more energy-efficient -- is faster writing and processing of data. In the Dec. 17 issue of the journal Science, physicists at the Technische Universitaet Muenchen (TUM) and the Universitaet zu Koeln report results that could point the way to a solution. TUM physicists set a lattice of magnetic vortices in a material in motion using electric current almost a million times weaker than in earlier studies.

Related Articles


Setting a lattice of magnetic vortices in motion using electric current almost a million times weaker than in earlier studies, physicists observed the coupling between electric current and magnetic structure -- through measurements at the research neutron source FRM II in Garching, Germany.

While Peter Gruenberg and Albert Fert were awarded the Nobel Prize in 2007 for research that led to significantly faster reading of data, in the past few years scientists have been concentrating on how magnetic information can be directly written to media using electric current. So far, the problem with this kind of work has been the need for extremely high currents, whose side effects are nearly impossible to rein in, even in nanostructures.

A little over a year ago, Professor Christian Pfleiderer and his team at the Physics Department of the TUM discovered an entirely new magnetic structure in a crystal of manganese silicon -- a lattice of magnetic vortices. The experiments in Garching were spurred by the theoretical forecasts of Professor Achim Rosch at the Universitaet zu Koeln and Professor Rembert Duine from the Universiteit Utrecht. They were expecting new results in the field of so-called spintronics, nanoelectronic elements that use not only the electric charge of electrons to process information, but also their magnetic moment, or spin.

Christian Pfleiderer's team of scientists sent electric current through the manganese silicon. Using neutrons from FRM II, they were able to observe a twist in the magnetic vortex lattice, which they could not explain initially. More interesting than the twist was the newly discovered magnetic lattice.

In the next step, Christian Pfleiderer and his team made further measurements at the MIRA instrument of the neutron source FRM II in an attempt to determine why the lattice twisted when a current was applied. At first, the calculations of the theoreticians contradicted the results of the experiments in Garching. "The magnetic structure twists, because the direction of the electric current is deflected extremely efficiently by quantum mechanical effects," explains Christian Pfleiderer. When an electron flies through the magnetic vortex, the electron's spin reacts to the vortex (see animation). In this way the electric current exerts a force on the magnetic vortices, which eventually begin to flow.

After further measurements, the team of Christian Pfleiderer and Achim Rosch was able to establish that the newly discovered lattice of magnetic vortices displays properties that have been of interest in nanotechnology for quite some time. They are, among other things, relevant to the development of new data storage systems. Notably, the magnetic vortices are very stable and at the same time very weakly anchored in the material, so that even the weakest of electric currents can lead to movement. This should allow data to be written and processed considerably faster and more efficiently in the future.


Story Source:

The above story is based on materials provided by Technische Universitaet Muenchen. Note: Materials may be edited for content and length.


Journal References:

  1. S. Muhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Boni. Skyrmion Lattice in a Chiral Magnet. Science, 2009; 323 (5916): 915 DOI: 10.1126/science.1166767
  2. F. Jonietz, S. Mühlbauer, C. Pfleiderer, A. Neubauer, W. Münzer, A. Bauer, T. Adams, R. Georgii, P. Böni, R. A. Duine, K. Everschor, M. Garst, A. Rosch,. Spin Transfer Torques in MnSi at Ultra-low Current Densities. Science, 30, 6011, 17 December 2010

Cite This Page:

Technische Universitaet Muenchen. "Electric current moves magnetic vortices: With the help of neutrons, physicists discover new ways to save data." ScienceDaily. ScienceDaily, 21 December 2010. <www.sciencedaily.com/releases/2010/12/101217145653.htm>.
Technische Universitaet Muenchen. (2010, December 21). Electric current moves magnetic vortices: With the help of neutrons, physicists discover new ways to save data. ScienceDaily. Retrieved April 17, 2015 from www.sciencedaily.com/releases/2010/12/101217145653.htm
Technische Universitaet Muenchen. "Electric current moves magnetic vortices: With the help of neutrons, physicists discover new ways to save data." ScienceDaily. www.sciencedaily.com/releases/2010/12/101217145653.htm (accessed April 17, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, April 17, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA Electric Rover Goes for a Spin

NASA Electric Rover Goes for a Spin

Reuters - Innovations Video Online (Apr. 17, 2015) — NASA&apos;s prototype electric buggy could influence future space rovers and conventional cars. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Scientists Create Self-Powering Camera

Scientists Create Self-Powering Camera

Reuters - Innovations Video Online (Apr. 17, 2015) — American scientists build a self-powering camera that captures images without using an external power source, allowing it to operate indefinitely in a well-lit environment. Elly Park reports. Video provided by Reuters
Powered by NewsLook.com
The State Of Virtual Reality

The State Of Virtual Reality

Newsy (Apr. 17, 2015) — Virtual Reality is still a young industry. What’s on offer and what should we expect from our immersive new future? Video provided by Newsy
Powered by NewsLook.com
Tackling Congestion in the World's Worst Traffic City

Tackling Congestion in the World's Worst Traffic City

Reuters - News Video Online (Apr. 16, 2015) — New transportation system and regulations aim to resolve gridlock in Jakarta, which has been named the city with the world&apos;s worst traffic. Angie Teo reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins