Featured Research

from universities, journals, and other organizations

Ion channel responsible for pain identified

Date:
December 17, 2010
Source:
University at Buffalo
Summary:
Neuroscience researchers conducting basic research on ion channels have demonstrated a process that could have a profound therapeutic impact on pain.

University at Buffalo neuroscience researchers conducting basic research on ion channels have demonstrated a process that could have a profound therapeutic impact on pain.

Related Articles


Targeting these ion channels pharmacologically would offer effective pain relief without generating the side effects of typical painkilling drugs, according to their paper, published in a recent issue of The Journal of Neuroscience.

"Pain is the most common symptom of injuries and diseases, and pain remains the primary reason a person visits the doctor," says Arin Bhattacharjee, PhD, UB assistant professor of pharmacology and toxicology in the School of Medicine and Biological Sciences, director of the Program in Neuroscience and senior author on the paper.

"Fifty million Americans suffer from chronic pain, costing between $100-200 billion a year in medical expenses, lost wages and other costs," says Bhattacharjee. "The need to understand pain mechanisms remains paramount for human health and for society."

Inflammatory pain can result from penetration wounds, burns, extreme cold, fractures, arthritis, autoimmune conditions, excessive stretching, infections and vasoconstriction.

"There are efficacious treatments for inflammatory pain, such as corticosteroids and non-steroidal anti-inflammatory drugs," says Bhattacharjee, "but the adverse side effects associated with these drugs limit their long-term use and compromise patient compliance. As a result, there is a great need to understand the cellular processes involved in inflammatory pain to create less toxic, less addictive, analgesic drugs."

Pain-responsive nerve cells, known as nociceptors, are electrical cells that normally respond to pain stimuli. Nociceptors then relay information to the central nervous system, indicating the location, nature and intensity of the ensuing pain. Nociceptors are sensitized during inflammation, their ionic properties are altered and their firing characteristics changes. This sensitization causes a state of "hyperalgesia," or increased sensitivity to pain.

"Merely touching the inflamed area can be very painful," notes Bhattacharjee. "The ionic mechanisms that are chiefly responsible for this inflammatory-mediated change in nociceptive firing had not been clearly identified.

"We were able to demonstrate that a certain class of potassium channels is removed from the surface of nociceptive cells during inflammatory signaling. The removal of these ion channels is linked to the hypersensitivity of these nerve cells. We demonstrated that reducing the expression of these channels by gene interference techniques produced a similar nociceptor hyperexcitability. "

Bhattacharjee says his team plans to extend their ion channel "trafficking" studies to in vivo models, using peptide inhibitors to try to prevent the removal of the potassium channels from the surface of nociceptors during inflammation.

"We expect to show that maintaining these channels at the surface during inflammation will be effective for pain relief. Successful completion of our studies will provide the impetus for direct human clinical trials. Megan O. Nuwer, PhD, and Kelly E. Picchione, PhD, both in the neuroscience program, are co-authors on the paper.

The study was supported by a Junior Faculty Award from the American Diabetes Association and a John R. Oishei Foundation Grant to Bhattacharjee.


Story Source:

The above story is based on materials provided by University at Buffalo. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. O. Nuwer, K. E. Picchione, A. Bhattacharjee. PKA-Induced Internalization of Slack KNa Channels Produces Dorsal Root Ganglion Neuron Hyperexcitability. Journal of Neuroscience, 2010; 30 (42): 14165 DOI: 10.1523/JNEUROSCI.3150-10.2010

Cite This Page:

University at Buffalo. "Ion channel responsible for pain identified." ScienceDaily. ScienceDaily, 17 December 2010. <www.sciencedaily.com/releases/2010/12/101217145932.htm>.
University at Buffalo. (2010, December 17). Ion channel responsible for pain identified. ScienceDaily. Retrieved March 31, 2015 from www.sciencedaily.com/releases/2010/12/101217145932.htm
University at Buffalo. "Ion channel responsible for pain identified." ScienceDaily. www.sciencedaily.com/releases/2010/12/101217145932.htm (accessed March 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, March 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solitair Device Aims to Takes Guesswork out of Sun Safety

Solitair Device Aims to Takes Guesswork out of Sun Safety

Reuters - Innovations Video Online (Mar. 31, 2015) The Solitair device aims to take the confusion out of how much sunlight we should expose our skin to. Small enough to be worn as a tie or hair clip, it monitors the user&apos;s sun exposure by taking into account their skin pigment, location and schedule. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Soda, Salt and Sugar: The Next Generation of Taxes

Soda, Salt and Sugar: The Next Generation of Taxes

Washington Post (Mar. 30, 2015) Denisa Livingston, a health advocate for the Din Community Advocacy Alliance, and the Post&apos;s Abby Phillip discuss efforts around the country to make unhealthy food choices hurt your wallet as much as your waistline. Video provided by Washington Post
Powered by NewsLook.com
UnitedHealth Buys Catamaran

UnitedHealth Buys Catamaran

Reuters - Business Video Online (Mar. 30, 2015) The $12.8 billion merger will combine the U.S.&apos; third and fourth largest pharmacy benefit managers. Analysts say smaller PBMs could also merge. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins