Featured Research

from universities, journals, and other organizations

Ion channel responsible for pain identified

Date:
December 17, 2010
Source:
University at Buffalo
Summary:
Neuroscience researchers conducting basic research on ion channels have demonstrated a process that could have a profound therapeutic impact on pain.

University at Buffalo neuroscience researchers conducting basic research on ion channels have demonstrated a process that could have a profound therapeutic impact on pain.

Related Articles


Targeting these ion channels pharmacologically would offer effective pain relief without generating the side effects of typical painkilling drugs, according to their paper, published in a recent issue of The Journal of Neuroscience.

"Pain is the most common symptom of injuries and diseases, and pain remains the primary reason a person visits the doctor," says Arin Bhattacharjee, PhD, UB assistant professor of pharmacology and toxicology in the School of Medicine and Biological Sciences, director of the Program in Neuroscience and senior author on the paper.

"Fifty million Americans suffer from chronic pain, costing between $100-200 billion a year in medical expenses, lost wages and other costs," says Bhattacharjee. "The need to understand pain mechanisms remains paramount for human health and for society."

Inflammatory pain can result from penetration wounds, burns, extreme cold, fractures, arthritis, autoimmune conditions, excessive stretching, infections and vasoconstriction.

"There are efficacious treatments for inflammatory pain, such as corticosteroids and non-steroidal anti-inflammatory drugs," says Bhattacharjee, "but the adverse side effects associated with these drugs limit their long-term use and compromise patient compliance. As a result, there is a great need to understand the cellular processes involved in inflammatory pain to create less toxic, less addictive, analgesic drugs."

Pain-responsive nerve cells, known as nociceptors, are electrical cells that normally respond to pain stimuli. Nociceptors then relay information to the central nervous system, indicating the location, nature and intensity of the ensuing pain. Nociceptors are sensitized during inflammation, their ionic properties are altered and their firing characteristics changes. This sensitization causes a state of "hyperalgesia," or increased sensitivity to pain.

"Merely touching the inflamed area can be very painful," notes Bhattacharjee. "The ionic mechanisms that are chiefly responsible for this inflammatory-mediated change in nociceptive firing had not been clearly identified.

"We were able to demonstrate that a certain class of potassium channels is removed from the surface of nociceptive cells during inflammatory signaling. The removal of these ion channels is linked to the hypersensitivity of these nerve cells. We demonstrated that reducing the expression of these channels by gene interference techniques produced a similar nociceptor hyperexcitability. "

Bhattacharjee says his team plans to extend their ion channel "trafficking" studies to in vivo models, using peptide inhibitors to try to prevent the removal of the potassium channels from the surface of nociceptors during inflammation.

"We expect to show that maintaining these channels at the surface during inflammation will be effective for pain relief. Successful completion of our studies will provide the impetus for direct human clinical trials. Megan O. Nuwer, PhD, and Kelly E. Picchione, PhD, both in the neuroscience program, are co-authors on the paper.

The study was supported by a Junior Faculty Award from the American Diabetes Association and a John R. Oishei Foundation Grant to Bhattacharjee.


Story Source:

The above story is based on materials provided by University at Buffalo. Note: Materials may be edited for content and length.


Journal Reference:

  1. M. O. Nuwer, K. E. Picchione, A. Bhattacharjee. PKA-Induced Internalization of Slack KNa Channels Produces Dorsal Root Ganglion Neuron Hyperexcitability. Journal of Neuroscience, 2010; 30 (42): 14165 DOI: 10.1523/JNEUROSCI.3150-10.2010

Cite This Page:

University at Buffalo. "Ion channel responsible for pain identified." ScienceDaily. ScienceDaily, 17 December 2010. <www.sciencedaily.com/releases/2010/12/101217145932.htm>.
University at Buffalo. (2010, December 17). Ion channel responsible for pain identified. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2010/12/101217145932.htm
University at Buffalo. "Ion channel responsible for pain identified." ScienceDaily. www.sciencedaily.com/releases/2010/12/101217145932.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins