Featured Research

from universities, journals, and other organizations

Discovery of new molecule could lead to more efficient rocket fuel

Date:
December 22, 2010
Source:
Expertanswer
Summary:
Trinitramid is the name of the new molecule that may be a component in future rocket fuel. This fuel could be 20 to 30 percent more efficient in comparison with the best rocket fuels available today, according to researchers in Sweden.

Trinitramid is the new molecule that may be a component in future rocket fuel.
Credit: Image courtesy of Expertanswer

Trinitramid is the name of the new molecule that may be a component in future rocket fuel. This fuel could be 20 to 30 percent more efficient in comparison with the best rocket fuels available today, according to researchers. The discovery was made at the Royal Institute of Technology (KTH) in Sweden.

"A rule of thumb is that for every ten-percent increase in efficiency for rocket fuel, the payload of the rocket can double. What's more, the molecule consists only of nitrogen and oxygen, which would make the rocket fuel environmentally friendly. This is more than can be said of today's solid rocket fuels, which entail the emission of the equivalent of 550 tons of concentrated hydrochloric acid for each launch of the space shuttle," says Tore Brinck, professor of physical chemistry at KTH.

Working with a research team at KTH, he discovered a new molecule in the nitrogen oxide group, which is not something that happens every day. It was while the scientists were studying the breakdown of another compound, using quantum chemistry computations, that they understood that the new molecule could be stable.

"As mentioned, what is specific to this molecule is that it contains only nitrogen and oxygen. Only eight such compounds were previously known, and most of them were discovered back in the 18th century. This is also clearly the largest of the nitrogen oxides. Its molecular formula is N(NO2)3, and the molecule is similar to a propeller in shape," says Tore Brinck.

The research team, consisting of Martin Rahm and Sergey Dvinshikh as well as Professor Istvan Furσ , besides Tore Brinck, has now shown how the molecule can be produced and analyzed. The scientists have also managed to produce enough of the compound in a test tube for it to be detectable.

"It remains to be seen how stable the molecule is in a solid form," says Tore Brinck.

It was during work to find an alternative to today's solid rocket fuel that the researchers found the new molecule. The findings are now being published in the journal Angewandte Chemie International Edition.


Story Source:

The above story is based on materials provided by Expertanswer. Note: Materials may be edited for content and length.


Journal Reference:

  1. Martin Rahm, Sergey V. Dvinskikh, Istvαn Furσ, Tore Brinck. Experimental Detection of Trinitramide, N(NO2)3. Angewandte Chemie International Edition, 2011; (forthcoming)

Cite This Page:

Expertanswer. "Discovery of new molecule could lead to more efficient rocket fuel." ScienceDaily. ScienceDaily, 22 December 2010. <www.sciencedaily.com/releases/2010/12/101222071831.htm>.
Expertanswer. (2010, December 22). Discovery of new molecule could lead to more efficient rocket fuel. ScienceDaily. Retrieved September 30, 2014 from www.sciencedaily.com/releases/2010/12/101222071831.htm
Expertanswer. "Discovery of new molecule could lead to more efficient rocket fuel." ScienceDaily. www.sciencedaily.com/releases/2010/12/101222071831.htm (accessed September 30, 2014).

Share This



More Space & Time News

Tuesday, September 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Water You Drink Might Be Older Than The Sun

The Water You Drink Might Be Older Than The Sun

Newsy (Sep. 27, 2014) — Researchers at the University of Michigan simulated the birth of planets and our sun to determine whether water in the solar system predates the sun. Video provided by Newsy
Powered by NewsLook.com
First Woman Cosmonaut in 17 Years Blasts Off for ISS

First Woman Cosmonaut in 17 Years Blasts Off for ISS

AFP (Sep. 26, 2014) — A Russian Soyuz spacecraft carrying an American astronaut and two Russian cosmonauts, including the first woman cosmonaut in 17 years, blasted off on schedule Friday. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
Water Discovery On Small Planet Could Be Key To Earth 2.0

Water Discovery On Small Planet Could Be Key To Earth 2.0

Newsy (Sep. 25, 2014) — Scientists have discovered traces of water in the atmosphere of a distant, Neptune-sized planet. Video provided by Newsy
Powered by NewsLook.com
Raw: US-Russian Crew Lifts Off for Space Station

Raw: US-Russian Crew Lifts Off for Space Station

AP (Sep. 25, 2014) — A U.S.-Russian space crew has blasted off successfully for the International Space Station. The Russian Soyuz-TMA14M spacecraft lifted off from the Russian-leased Baikonur launch facility in Kazakhstan. (Sept. 25) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins