Featured Research

from universities, journals, and other organizations

Detecting esophageal cancer with light

Date:
January 5, 2011
Source:
Duke University
Summary:
A tiny light source and sensors at the end of an endoscope may provide a more accurate way to identify pre-cancerous cells in the lining of the esophagus.

This is Neil Terry, left, and Adam Wax with a prototype of the new device.
Credit: Duke University Photography

A tiny light source and sensors at the end of an endoscope may provide a more accurate way to identify pre-cancerous cells in the lining of the esophagus.

Developed by biomedical engineers at Duke University and successfully tested on patients during a clinical trial at the University of North Carolina at Chapel Hill, the device holds the promise of being a less invasive method for testing patients suspected of having Barrett's esophagus, a change in the lining of the esophagus due to acid reflux. Acid reflux occurs when stomach acid splashes, or refluxes, up into the esophagus.

Long periods of acid reflux can change the cells that line the esophagus, making them appear more like intestinal cells than esophageal cells. These cellular changes can also be a precursor to cancer. As in most cancers, early identification of these pre-cancerous cells often leads to better outcomes for patients. Barrett's esophagus afflicts more than one percent of the U.S. population, with most patients above the age of 50.

Using an endoscope to reach the esophagus via the nose, physicians shine short bursts of this light at locations of suspected disease and sensors capture and analyze the light as it is reflected back. In particular, they are trying to spot characteristic changes within the layer of cells known as the epithelium, which line cavities and surfaces throughout the body.

"By interpreting the way the light scatters after we shine it at a location on the tissue surface, we can the spot the tell-tales signs of cells that are changing from their healthy, normal state to those that may become cancerous," said Neil Terry, a Ph.D. student working in the laboratory of Adam Wax, associate professor of biomedical engineering at Duke's Pratt School of Engineering, who developed the device.

The team published their findings online in the January issue of the journal Gastroenterology.

"Specifically, the nuclei of pre-cancerous cells are larger than typical cell nuclei, and the light scatters back from them in a characteristic manner," Terry continued. "When we compared the findings from our system with an actual review by pathologists, we found they correlated in 86 percent of the samples."

UNC gastroenterologist Nicholas Shaheen, M.D., conducted the preliminary clinical trial of the device on 46 patients with Barrett's esophagus.

"Currently, we take many random tissue samples from areas we where we think abnormal cells may be located," Shaheen said. "This new system may make our biopsies smarter and more targeted. Early detection is crucial, because the cure rate for esophageal cancer that is caught early is quite high, while the cure rate for advanced disease is dismal, with a 15 percent survival rate after five years."

The technology that Wax and his team developed for cancer detection is known as angle-resolved low coherence interferometry (a/LCI). The technique is able to separate the unique patterns of the nucleus from the other parts of the cell and provide representations of its changes in shape in real time.

"This optical approach of sampling allows us to cover more tissue sites in less time and has the potential to significantly improve our ability to spot and monitor these pre-cancerous cells," Wax said. "This type of approach could be used to improve and perhaps one day supplant the physical biopsies currently being used."

Wax pointed out that since approximately 85 percent of all cancers begin within the layers of the epithelium in various parts of the body, he believes that the new system could also work in such cancers as those of the colon, trachea, cervix or bladder.

The research was supported by the National Institutes of Health, the National Science Foundation and Oncoscope, Inc., a company Wax founded in 2006, based on the Duke technology. Wax has a financial interest in the company, and Terry is a consultant.

Oncoscope plans a clinical trial of the system for approval, and Wax said there could be a commercially available device as early as 2012.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Neil G. Terry, Yizheng Zhu, Matthew T. Rinehart, William J. Brown, Steven C. Gebhart, Stephanie Bright, Elizabeth Carretta, Courtney G. Ziefle, Masoud Panjehpour, Joseph Galanko, Ryan D. Madanick, Evan S. Dellon, Dimitri Trembath, Ana Bennett, John R. Goldblum, Bergein F. Overholt, John T. Woosley, Nicholas J. Shaheen, Adam Wax. Detection of Dysplasia in Barrett's Esophagus With In Vivo Depth-Resolved Nuclear Morphology Measurements. Gastroenterology, 2011; 140 (1): 42-50 DOI: 10.1053/j.gastro.2010.09.008

Cite This Page:

Duke University. "Detecting esophageal cancer with light." ScienceDaily. ScienceDaily, 5 January 2011. <www.sciencedaily.com/releases/2011/01/110104161629.htm>.
Duke University. (2011, January 5). Detecting esophageal cancer with light. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2011/01/110104161629.htm
Duke University. "Detecting esophageal cancer with light." ScienceDaily. www.sciencedaily.com/releases/2011/01/110104161629.htm (accessed September 16, 2014).

Share This



More Health & Medicine News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

President To Send 3,000 Military Personnel To Fight Ebola

President To Send 3,000 Military Personnel To Fight Ebola

Newsy (Sep. 16, 2014) President Obama is expected to send 3,000 troops to West Africa as part of the effort to contain Ebola's spread. Video provided by Newsy
Powered by NewsLook.com
Man Floats for 31 Hours in Gulf Waters

Man Floats for 31 Hours in Gulf Waters

AP (Sep. 16, 2014) A Texas man is lucky to be alive after he and three others floated for more than a day in the Gulf of Mexico when their boat sank during a fishing trip. (Sept. 16) Video provided by AP
Powered by NewsLook.com
EU Ministers and Experts Meet to Discuss Ebola Reponse

EU Ministers and Experts Meet to Discuss Ebola Reponse

AFP (Sep. 15, 2014) The European Commission met on Monday to coordinate aid that the EU can offer to African countries affected by the Ebola outbreak. Duration: 00:58 Video provided by AFP
Powered by NewsLook.com
Despite The Risks, Antibiotics Still Overprescribed For Kids

Despite The Risks, Antibiotics Still Overprescribed For Kids

Newsy (Sep. 15, 2014) A new study finds children are prescribed antibiotics twice as often as is necessary. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins