Featured Research

from universities, journals, and other organizations

Graphene grains make atom-thick patchwork 'quilts'

Date:
January 11, 2011
Source:
Cornell University
Summary:
Artistry from science: researchers have unveiled striking, atomic-resolution details of what graphene "quilts" look like at the boundaries between patches, and have uncovered key insights into graphene's electrical and mechanical properties.

A false-color microscopy image overlay depicting the shapes and lattice orientations of several grains in graphene.
Credit: Muller lab

A quick look at new Cornell research hints at colorful patchwork quilts, but they are actually pictures of graphene -- one atom-thick sheets of carbon stitched together at tilted interfaces. Researchers have unveiled striking, atomic-resolution details of what graphene "quilts" look like at the boundaries between patches, and have uncovered key insights into graphene's electrical and mechanical properties.

The multidisciplinary Cornell collaboration, publishing online Jan. 5 in the journal Nature, focuses on graphene -- a one atom-thick sheet of carbon atoms bonded in a crystal lattice like a honeycomb or chicken wire -- because of its electrical properties and potential to improve anything from solar cells to cell phone screens. But it doesn't grow in perfect sheets; rather, it develops in pieces that resemble patchwork quilts, where the honeycomb lattice meets up imperfectly and creates five- or seven-member carbon rings, rather than the perfect six. Where these "patches" meet are called grain boundaries, and scientists had wondered whether these boundaries would allow the special properties of a perfect graphene crystal to transfer to the much larger quilt-like structures.

To study the material, the researchers grew graphene membranes on a copper substrate (a method devised by another group) but then conceived a novel way to peel them off as free-standing, atom-thick films. Then, with diffraction imaging electron microscopy, they imaged the graphene by seeing how electrons bounced off at certain angles, and using a color to represent that angle. By overlaying different colors according to how the electrons bounced, they created an easy, efficient method of imaging the graphene grain boundaries according to their orientation. And as a bonus, their pictures took an artistic turn, reminding the scientists of patchwork quilts.

"You don't want to look at the whole quilt by counting each thread," said David Muller, professor of applied and engineering physics and co-director of the Kavli Institute at Cornell for Nanoscale Science, who conducted the work with Paul McEuen, professor of physics and director of the Kavli Institute; and Kavli member Jiwoong Park, assistant professor of chemistry and chemical biology. "You want to stand back and see what it looks like on the bed. And so we developed a method that filters out the crystal information in a way that you don't have to count every atom."

This new method could apply to other two-dimensional materials and sheds new light on the previously mysterious way that graphene was stitched together at grain boundaries.

Further analysis revealed that growing larger grains (bigger patches) didn't improve the electrical conductivity of the graphene, as was previously thought by materials scientists. Rather, it is impurities that sneak into the sheets that make the electrical properties fluctuate. This insight will lead scientists closer to the best ways to grow and use graphene.

The work was supported by the National Science Foundation through the Cornell Center for Materials Research and the Nanoscale Science and Engineering Initiative, as well as the Air Force Office of Scientific Research through the Multidisciplinary Research Program of the University Research Initiative and a Presidential Early Career Award for Scientists and Engineers. The paper's other contributors were: Pinshane Huang (applied and engineering physics), Carlos Ruiz-Vargas (applied and engineering physics), Arend van der Zande (physics), William Whitney (physics), Mark Levendorf (chemistry), Joshua Kevek (Oregon State), Shivank Garg (chemistry), Jonathan Alden (applied and engineering physics), Caleb Hustedt (Brigham Young University) and Ye Zhu (applied and engineering physics).


Story Source:

The above story is based on materials provided by Cornell University. The original article was written by Anne Ju. Note: Materials may be edited for content and length.


Journal Reference:

  1. Pinshane Y. Huang, Carlos S. Ruiz-Vargas, Arend M. van der Zande, William S. Whitney, Mark P. Levendorf, Joshua W. Kevek, Shivank Garg, Jonathan S. Alden, Caleb J. Hustedt, Ye Zhu, Jiwoong Park, Paul L. McEuen, David A. Muller. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature, 2011; DOI: 10.1038/nature09718

Cite This Page:

Cornell University. "Graphene grains make atom-thick patchwork 'quilts'." ScienceDaily. ScienceDaily, 11 January 2011. <www.sciencedaily.com/releases/2011/01/110105131747.htm>.
Cornell University. (2011, January 11). Graphene grains make atom-thick patchwork 'quilts'. ScienceDaily. Retrieved April 17, 2014 from www.sciencedaily.com/releases/2011/01/110105131747.htm
Cornell University. "Graphene grains make atom-thick patchwork 'quilts'." ScienceDaily. www.sciencedaily.com/releases/2011/01/110105131747.htm (accessed April 17, 2014).

Share This



More Matter & Energy News

Thursday, April 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com
Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

Porsche CEO Says Supercar Is Not Dead: Cue the Spyder 918

TheStreet (Apr. 16, 2014) The Porsche Spyder 918 proves that, in an automotive world obsessed with fuel efficiency, the supercar is not dead. Porsche North America CEO Detlev von Platen attributes the brand's consistent sales growth -- 21% in 2013 -- with an investment in new technology and expanded performance dynamics. The hybrid Spyder 918 has 887 horsepower and 944 lb-ft of torque, but it can run 18 miles on just an electric charge. The $845,000 vehicle is not a consumer-targeted vehicle but a brand statement. Video provided by TheStreet
Powered by NewsLook.com
Industry's Optimism Shines At New York Auto Show

Industry's Optimism Shines At New York Auto Show

Newsy (Apr. 16, 2014) After seeing auto sales grow last month, there's plenty for the industry to celebrate as it rolls out its newest designs. Video provided by Newsy
Powered by NewsLook.com
Ford Mustang Fetes Its 50th Atop Empire State Building

Ford Mustang Fetes Its 50th Atop Empire State Building

AFP (Apr. 16, 2014) Ford celebrated the 50th birthday of its beloved Mustang by displaying a new model of the convertible on top of the Empire State Building in New York. Duration: 00:28 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins