Featured Research

from universities, journals, and other organizations

Go figure: Math model may help researchers with stem cell, cancer therapies

Date:
January 21, 2011
Source:
University of Florida
Summary:
Researchers have devised an algorithm to track the rates at which somatic and cancer stem cells divide. The method may rev up efforts to develop stem cell therapies for Alzheimer's, Parkinson's and other diseases. It may also help get to the root of the cancer-stem cell theory, which puts forth the idea that a tiny percentage of loner cancer cells gives rise to tumors.

The difficult task of sorting and counting prized stem cells and their cancer-causing cousins has long frustrated scientists looking for new ways to help people who have progressive diseases.

But in a development likely to delight math teachers, University of Florida researchers have devised a series of mathematical steps that accomplishes what the most powerful microscopes, high-throughput screening systems and protein assays have failed to do -- assess how rapidly stem cells and their malignant, stemlike alter egos increase their numbers.

The method, published in the online journal PLoS ONE in January, may rev up efforts to develop stem cell therapies for Alzheimer's, Parkinson's and other diseases. It may also help get to the root of the cancer-stem cell theory, which puts forth the idea that a tiny percentage of loner cancer cells gives rise to tumors.

"Math is going to be the new microscope of the 21st century because it is going to allow us to see things in biology that we cannot see any other way," said Brent Reynolds, Ph.D., an associate professor of neurosurgery at UF's McKnight Brain Institute and a member of the UF Shands Cancer Center. "Stem cells and the cells that drive cancer may be as infrequent as one in 10,000 or one in 100,000 cells. The problem is how do you understand the biology of something whose frequency is so low?"

Inspired by a 2004 essay by Joel E. Cohen, Ph.D., of The Rockefeller University and Columbia University that described the explosive synergy between mathematics and biology, Reynolds and postdoctoral associate Loic P. Deleyrolle set out to build an algorithm that could determine the rate stem cells and cancer stem cells divide.

High hopes to treat or prevent diseases have been pinned on these indistinguishable cells, which are often adrift in populations of millions of other cells. Scientists know stem cells exist mainly because their handiwork is everywhere -- tissues heal and regenerate because of stem cells, and somehow cancer may reappear years after it was thought to be completely eliminated.

With Geoffrey Ericksson, Ph.D., a computational neuroscientist at the Queensland Brain Institute, and other scientists in Australia, the team proposed a mathematical interpretation of neurospheres -- tiny collections of brain cells that include stem cells and their progeny at different stages of development.

They tested the mathematical approach by using brain tumor and breast tumor cells in cultures and in mice, correlating the estimates generated by the mathematical model with the aggressiveness of the cells they were studying.

"The unique thing about our study is we were able to do the biology," Deleyrolle said. "We took our simulation to the real world with real cells."

By offering a method to evaluate the effects of diseases and treatments on stem cell activity in the brain, as well as allowing the assessment of malignant stemlike cells, researchers believe they can better evaluate potential therapies for diseases.

"Estimating the numbers of stem cells one has in a particular tissue or culture has important implications in the development of therapeutics, including those for brain tumors," said Harley Kornblum, M.D., Ph.D., professor in residence at the Broad Center of Regenerative Medicine and Stem Cell Research at the University of California, Los Angeles, who was not involved with the study. "This method provides a mathematical model that will enable researchers to do just that. Certainly, it will help my own research in these areas a great deal."


Story Source:

The above story is based on materials provided by University of Florida. Note: Materials may be edited for content and length.


Journal Reference:

  1. Loic P. Deleyrolle, Geoffery Ericksson, Brian J. Morrison, J. Alejandro Lopez, Kevin Burrage, Pamela Burrage, Angelo Vescovi, Rodney L. Rietze, Brent A. Reynolds. Determination of Somatic and Cancer Stem Cell Self-Renewing Symmetric Division Rate Using Sphere Assays. PLoS ONE, 2011; 6 (1): e15844 DOI: 10.1371/journal.pone.0015844

Cite This Page:

University of Florida. "Go figure: Math model may help researchers with stem cell, cancer therapies." ScienceDaily. ScienceDaily, 21 January 2011. <www.sciencedaily.com/releases/2011/01/110120163931.htm>.
University of Florida. (2011, January 21). Go figure: Math model may help researchers with stem cell, cancer therapies. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/01/110120163931.htm
University of Florida. "Go figure: Math model may help researchers with stem cell, cancer therapies." ScienceDaily. www.sciencedaily.com/releases/2011/01/110120163931.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins