Featured Research

from universities, journals, and other organizations

New materials may bring advanced optical technologies, cloaking

Date:
January 25, 2011
Source:
Purdue University
Summary:
Researchers are developing a new class of "plasmonic metamaterials" as potential building blocks for advanced optical technologies, including ultrapowerful microscopes and computers, improved solar cells, and a possible invisibility cloak.

Researchers are developing a new class of "plasmonic metamaterials" as potential building blocks for advanced optical technologies and a range of potential breakthroughs in the field of transformation optics. This image shows the transformation optics "quality factor" for several plasmonic materials. For transformation optical devices, the quality factor rises as the amount of light "lost," or absorbed, by plasmonic materials falls, resulting in materials that are promising for a range of advanced technologies.
Credit: Birck Nanotechnology Center, Purdue University

Researchers are developing a new class of "plasmonic metamaterials" as potential building blocks for advanced optical technologies, including ultrapowerful microscopes and computers, improved solar cells, and a possible invisibility cloak.

Related Articles


The new materials could make possible "nanophotonic" devices for numerous applications, said Alexandra Boltasseva, an assistant professor of electrical and computer engineering at Purdue University.

Unlike natural materials, metamaterials may possess an index of refraction less than one or less than zero. Refraction occurs as electromagnetic waves, including light, bend when passing from one material into another. It causes the bent-stick-in-water effect, which occurs when a stick placed in a glass of water appears crooked when viewed from the outside.

Being able to create materials with an index of refraction that's negative or between one and zero promises a range of potential breakthroughs in a new field called transformation optics. However, development of new technologies using metamaterials has been hindered by two major limitations: too much light is "lost," or absorbed by metals such as silver and gold contained in the metamaterials, and the materials need to be more precisely tuned so that they possess the proper index of refraction.

Now, researchers are proposing a new approach to overcome these obstacles. Findings will be detailed in an article appearing Jan. 21 in the journal Science. The article was written by Boltasseva and Harry Atwater, Howard Hughes Professor and a professor of applied physics and materials science at the California Institute of Technology.

The researchers are working to replace silver and gold in materials that are created using two options: making semiconductors more metallic by adding metal impurities to them; or adding non-metallic elements to metals, in effect making them less metallic. Examples of these materials include aluminum oxides and titanium nitride, which looks like gold and is used to coat the domes of Russian churches.

Researchers have tested some of the new materials, demonstrating their optical properties and finding that they outperform silver and gold, in work based at the Birck Nanotechnology Center in Purdue's Discovery Park.

Plasmonic metamaterials are promising for various advances, including a possible "hyperlens" that could make optical microscopes 10 times more powerful and able to see objects as small as DNA; advanced sensors; new types of light-harvesting systems for more efficient solar cells; computers and consumer electronics that use light instead of electronic signals to process information; and a cloak of invisibility.

Optical nanophotonic circuits might harness clouds of electrons called "surface plasmons" to manipulate and control the routing of light in devices too tiny for conventional lasers.

Some of the new materials are showing promise in uses involving near-infrared light, the range of the spectrum critical for telecommunications and fiberoptics. Other materials also might work for light in the visible range of the spectrum. The new materials might be tuned so that their refractive index is ideal for specific ranges of the spectrum, allowing their use for particular applications.

Future photonics technologies will revolve around new types of optical transistors, switches and data processors. Conventional computers transmit and process pieces of information in serial form, or one piece at a time. However, future computers may use parallel streams of data, resulting in much faster networks and computers.

The work has been funded by the U.S. Army Research Office.


Story Source:

The above story is based on materials provided by Purdue University. The original article was written by Emil Venere. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Boltasseva, H. A. Atwater. Low-Loss Plasmonic Metamaterials. Science, 2011; 331 (6015): 290 DOI: 10.1126/science.1198258

Cite This Page:

Purdue University. "New materials may bring advanced optical technologies, cloaking." ScienceDaily. ScienceDaily, 25 January 2011. <www.sciencedaily.com/releases/2011/01/110125104143.htm>.
Purdue University. (2011, January 25). New materials may bring advanced optical technologies, cloaking. ScienceDaily. Retrieved March 2, 2015 from www.sciencedaily.com/releases/2011/01/110125104143.htm
Purdue University. "New materials may bring advanced optical technologies, cloaking." ScienceDaily. www.sciencedaily.com/releases/2011/01/110125104143.htm (accessed March 2, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, March 2, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Solar Plane Passes New Test Ahead of World Tour

Solar Plane Passes New Test Ahead of World Tour

AFP (Mar. 2, 2015) A solar-powered plane made a third successful test flight in the United Arab Emirates on Monday ahead of a planned round-the-world tour to promote alternative energy. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Electric Hydrofoiling Watercraft Delivers Eco-Friendly Thrills

Reuters - Innovations Video Online (Mar. 2, 2015) The Quadrofoil is a high-tech electric personal watercraft that its makers call a &apos;sports car for the water&apos;. When it hits 10 km/h, the Slovenian-engineered Quadrofoil is lifted above the water onto four wing-like hydrofoils where it &apos;flies&apos; above the surface with minimal water resistance. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
The Tech Challenges Facing Automakers

The Tech Challenges Facing Automakers

Reuters - Business Video Online (Mar. 2, 2015) This year&apos;s The International Motor Show is getting underway in Geneva. As Sonia Legg reports its taking place as Europe&apos;s beleaguered car industry finally starts showing signs of picking up. Video provided by Reuters
Powered by NewsLook.com
HTC And Valve Team Up For Virtual Reality Headset

HTC And Valve Team Up For Virtual Reality Headset

Newsy (Mar. 1, 2015) HTC unveiled Vive, its new virtual reality headset, Sunday. The device is supported by gaming company Valve, which has made a push into the market. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins