Featured Research

from universities, journals, and other organizations

Second pathway for antidepressants: New fluorescent assay reveals TREK1 mechanism

Date:
February 9, 2011
Source:
DOE/Lawrence Berkeley National Laboratory
Summary:
Researchers have developed a unique cell-based fluorescent assay that enabled them to identify a means by which fluoxetine, the active ingredient in Prozac, suppresses the activity of the TREK1 potassium channel. TREK1 could be an important new target for antidepressant drugs.

TREK1 potassium ion channels, fluorescing green in these cultured neurons, have been linked to the regulation of emotions.
Credit: Image from Isacoff group

Using a unique and relatively simple cell-based fluorescent assay they developed, scientists with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC), Berkeley have identified a means by which fluoxetine, the active ingredient in Prozac, suppresses the activity of the TREK1 potassium channel. TREK1 activity has been implicated in mood regulation and could be an important target for fluoxetine and other antidepressant drugs.

"Whereas the inhibiting of serotonin re-uptake remains fluoxetine's primary antidepression mechanism, many pharmacological agents have more than one target," says Ehud Isacoff, a neurobiophysicist who holds joint appointments with Berkeley Lab's Physical Biosciences Division and UC Berkeley's Department of Molecular and Cell Biology. "Our study shows that the inhibition of TREK1 by fluoxetine, which was found in earlier studies, is accompanied by an unbinding of the protein's C-terminal domain from the membrane. This is the first observation of the mechanism by which TREK1 might be regulated by antidepressant drugs."

Isacoff is the corresponding author on a paper reporting the results of this study that appears in the Proceedings of the National Academy of Science (PNAS). Co-authoring this paper were Guillaume Sandoz, a TREK1 specialist with France's National Center for Scientific Research at the Institute for Molecular and Cellular Physiology, and PhD student Sarah Bell, both of whom were with Isacoff's research group at the time the work was done.

Neurons in the human brain are like high-speed transistors, controlling the flow of electrical current through channels in their membranes by the opening and closing of molecular "gates" that control the flow of ions through selective pores. TREK1 is one of the most ubiquitous of these transmembrane proteins, gating the passage of potassium ions through neural membranes, which sets the excitability of the neuron. Earlier studies had shown that when the TREK1 gene is "knocked out" of mice, the mice display a depression-resistant phenotype that mimics the behavior of mice treated with fluoxetine and that the antidepressant inhibits the activity of the TREK1 channel. While these results pointed to a possible role for the TREK1 ion channel in the beneficial response to fluoxetine, the mechanism behind this activity was unclear.

"Studying what the different protein parts of an ion channel do is a huge challenge," Isacoff says. "Over the years, my group has developed techniques by which the domains of channel proteins can be labeled with site-specific fluorescent dyes. Structural rearrangements of the labeled sites in the channel can then be detected through changes in the fluorescence."

Isacoff and his group separated the C-terminal domain from the rest of the protein and tagged it with a green fluorescent protein (GFP) -- a fluorescent protein from jellyfish commonly used to paint cells green for biological studies. Whereas the pore of the TREK1 ion channel is embedded in the plasma membrane of a neuron, the C-terminal is a short tail that protrudes out into the surrounding cytoplasm.

Using voltage clamps to measure electrical currents through the channel and fluorescence to monitor the disposition of the C-terminal domain, Isacoff and his group found that when the C-terminal tail is fully bound to the plasma membrane, the TREK1 potassium channel opens more; when the tail is unbound from the plasma membrane, the ion channel tends to close.

"We found that fluoxetine causes the isolated C-terminal domain to unbind from the membrane and also causes an inhibition of current from the full TREK1 channel," Isacoff says.

The next step will be to see how the C-terminal tail is affected by the presence of fluoxetine when the tail is still attached to the rest of the TREK1 protein. In the meantime, Isacoff and his team feel they now have a valuable assay that can be used to monitor the reversible plasma membrane association of protein domains without the need for scanning, optical slicing or imaging.

"Pharmaceutical companies screening for potential new drugs, such as improved antidepressants, prefer assays that are fast and simple," Isacoff says. "Our technique can be used to follow changes in lipid composition that result from membrane signaling events, or to study the binding to membranes by cytoplasmic regulatory domains of ion channels. This could be very useful for pharmaceutical research."

This research was primarily supported by the National Institutes of Health.


Story Source:

The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. Note: Materials may be edited for content and length.


Journal Reference:

  1. G. Sandoz, S. C. Bell, E. Y. Isacoff. Optical probing of a dynamic membrane interaction that regulates the TREK1 channel. Proceedings of the National Academy of Sciences, 2011; DOI: 10.1073/pnas.1015788108

Cite This Page:

DOE/Lawrence Berkeley National Laboratory. "Second pathway for antidepressants: New fluorescent assay reveals TREK1 mechanism." ScienceDaily. ScienceDaily, 9 February 2011. <www.sciencedaily.com/releases/2011/02/110207122017.htm>.
DOE/Lawrence Berkeley National Laboratory. (2011, February 9). Second pathway for antidepressants: New fluorescent assay reveals TREK1 mechanism. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2011/02/110207122017.htm
DOE/Lawrence Berkeley National Laboratory. "Second pathway for antidepressants: New fluorescent assay reveals TREK1 mechanism." ScienceDaily. www.sciencedaily.com/releases/2011/02/110207122017.htm (accessed September 19, 2014).

Share This



More Health & Medicine News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Cost of Ebola

The Cost of Ebola

Reuters - Business Video Online (Sep. 18, 2014) As Sierra Leone prepares for a three-day "lockdown" in its latest bid to stem the spread of Ebola, Ciara Lee looks at the financial implications of fighting the largest ever outbreak of the disease. Video provided by Reuters
Powered by NewsLook.com
What HealthKit Bug Means For Your iOS Fitness Apps

What HealthKit Bug Means For Your iOS Fitness Apps

Newsy (Sep. 18, 2014) Apple has delayed the launch of the HealthKit app platform, citing a bug. Video provided by Newsy
Powered by NewsLook.com
U.S. Food Makers Surpass Calorie-Cutting Pledge

U.S. Food Makers Surpass Calorie-Cutting Pledge

Newsy (Sep. 18, 2014) Sixteen large food and beverage companies in the United States that committed to cut calories in their products far surpassed their target. Video provided by Newsy
Powered by NewsLook.com
Residents Vaccinated as Haiti Fights Cholera Epidemic

Residents Vaccinated as Haiti Fights Cholera Epidemic

AFP (Sep. 18, 2014) Haitians receive the second dose of the vaccine against cholera as part of the UN's vaccination campaign. Duration: 00:34 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins