Featured Research

from universities, journals, and other organizations

Chinks in the brain circuitry make some more vulnerable to anxiety

Date:
February 13, 2011
Source:
University of California - Berkeley
Summary:
Why do some people fret over the most trivial matters while others remain calm in the face of calamity? Researchers have identified two different chinks in our brain circuitry that explain why some of us are more prone to anxiety.

Why do some people fret over the most trivial matters while others remain calm in the face of calamity? Researchers at the University of California, Berkeley, have identified two different chinks in our brain circuitry that explain why some of us are more prone to anxiety.

Related Articles


Their findings, published Feb. 10 in the journal Neuron may pave the way for more targeted treatment of chronic fear and anxiety disorders. Such conditions affect at least 25 million Americans and include panic attacks, social phobias, obsessive-compulsive behavior and post-traumatic stress disorder.

In the brain imaging study, researchers from UC Berkeley and Cambridge University discovered two distinct neural pathways that play a role in whether we develop and overcome fears. The first involves an overactive amygdala, which is home to the brain's primal fight-or-flight reflex and plays a role in developing specific phobias.

The second involves activity in the ventral prefrontal cortex, a neural region that helps us to overcome our fears and worries. Some participants were able to mobilize their ventral prefrontal cortex to reduce their fear responses even while negative events were still occurring, the study found.

"This finding is important because it suggests some people may be able to use this ventral frontal part of the brain to regulate their fear responses -- even in situations where stressful or dangerous events are ongoing," said UC Berkeley psychologist Sonia Bishop, lead author of the paper.

"If we can train those individuals who are not naturally good at this to be able to do this, we may be able to help chronically anxious individuals as well as those who live in situations where they are exposed to dangerous or stressful situations over a long time frame," Bishop added.

Bishop and her team used functional Magnetic Resonance Imaging (fMRI) to examine the brains of 23 healthy adults. As their brains were scanned, participants viewed various scenarios in which a virtual figure was seen in a computerized room. In one room, the figure would place his hands over his ears before a loud scream was sounded. But in another room, the gesture did not predict when the scream would occur. This placed volunteers in a sustained state of anticipation.

Participants who showed overactivity in the amygdala developed much stronger fear responses to gestures that predicted screams. A second entirely separate risk factor turned out to be failure to activate the ventral prefrontal cortex. Researchers found that participants who were able to activate this region were much more capable of decreasing their fear responses, even before the screams stopped.

The discovery that there is not one, but two routes in the brain circuitry that lead to heightened fear or anxiety is a key finding, the researchers said, and it offers hope for new targeted treatment approaches.

"Some individuals with anxiety disorders are helped more by cognitive therapies, while others are helped more by drug treatments," Bishop said. "If we know which of these neural vulnerabilities a patient has, we may be able to predict what treatment is most likely to be of help."

In addition to Bishop, coauthors of the study are Anwar O. Nunez Elizalde at UC Berkeley; Iole Indovina of the Neuroimaging Laboratory of the Santa Lucia Foundation in Rome, Italy; Trevor Robbins at Cambridge University in the United Kingdom; and Barney Dunn at the MRC Cognition and Brain Sciences Unit in Cambridge, U.K.


Story Source:

The above story is based on materials provided by University of California - Berkeley. Note: Materials may be edited for content and length.


Journal Reference:

  1. Iole Indovina, Trevor W. Robbins, Anwar O. Núñez-Elizalde, Barnaby D. Dunn, Sonia J. Bishop. Fear-Conditioning Mechanisms Associated with Trait Vulnerability to Anxiety in Humans. Neuron, 2011; 69 (3): 563 DOI: 10.1016/j.neuron.2010.12.034

Cite This Page:

University of California - Berkeley. "Chinks in the brain circuitry make some more vulnerable to anxiety." ScienceDaily. ScienceDaily, 13 February 2011. <www.sciencedaily.com/releases/2011/02/110210141247.htm>.
University of California - Berkeley. (2011, February 13). Chinks in the brain circuitry make some more vulnerable to anxiety. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2011/02/110210141247.htm
University of California - Berkeley. "Chinks in the brain circuitry make some more vulnerable to anxiety." ScienceDaily. www.sciencedaily.com/releases/2011/02/110210141247.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Binge-Watching TV Linked To Loneliness

Binge-Watching TV Linked To Loneliness

Newsy (Jan. 29, 2015) — Researchers at University of Texas at Austin found a link between binge-watching TV shows and feelings of loneliness and depression. Video provided by Newsy
Powered by NewsLook.com
Signs You Might Be The Passive Aggressive Friend

Signs You Might Be The Passive Aggressive Friend

BuzzFeed (Jan. 28, 2015) — "No, I&apos;m not mad. Why, are you mad?" Video provided by BuzzFeed
Powered by NewsLook.com
City Divided: A Look at Model Schools in the TDSB

City Divided: A Look at Model Schools in the TDSB

The Toronto Star (Jan. 27, 2015) — Model schools are rethinking how they engage with the community to help enhance the lives of the students and their parents. Video provided by The Toronto Star
Powered by NewsLook.com
Man Saves Pennies For 65 Years

Man Saves Pennies For 65 Years

Rooftop Comedy (Jan. 26, 2015) — A man in Texas saved every penny he found for 65 years, and this week he finally cashed them in. Bank tellers at Prosperity Bank in Slaton, Texas were shocked when Ira Keys arrived at their bank with over 500 pounds of loose pennies stored in coffee cans. After more than an hour of sorting and counting, it turned out the 81 year-old was in possession of 81,600 pennies, or $816. And he&apos;s got more at home! Video provided by Rooftop Comedy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins