Featured Research

from universities, journals, and other organizations

Partnership of genes affects the brain's development

Date:
February 14, 2011
Source:
Max-Planck-Gesellschaft
Summary:
The human brain consists of approximately one hundred billion nerve cells. Each of these cells needs to connect to specific other cells during the brain's development in order to form a fully functional organism. Yet how does a nerve cell know where it should grow and which cells to contact? Scientists have now shown that growing nerve cells realize when they've reached their target area in the fly brain thanks to the interaction of two genes. Similar mechanisms are also likely to play a role during the development of the vertebrate brain and could thus be important for a better understanding of certain developmental disorders.

The photoreceptor nerve cells (green) of the fly's compound eye send their axons to the brain's optic ganglia. Scientists have now discovered that the axons are able to recognize their target area in the brain thanks to the interaction of two genes.
Credit: Max Planck Institute of Neurobiology / Suzuki

The human brain consists of approximately one hundred billion nerve cells. Each of these cells needs to connect to specific other cells during the brain's development in order to form a fully functional organism. Yet how does a nerve cell know where it should grow and which cells to contact? Scientists of the Max Planck Institute of Neurobiology in Martinsried have now shown that growing nerve cells realise when they've reached their target area in the fly brain thanks to the interaction of two genes.

Similar mechanisms are also likely to play a role during the development of the vertebrate brain and could thus be important for a better understanding of certain developmental disorders.

The nervous system is incredibly complex. Millions and even many billion nerve cells are created during development. Each of these cells sets up connections to their neighbouring cells and then sends out a long connecting cable, the axon, to a different brain region. Once the axon has reached its target area it connects itself with the local nerve cells. In this way a processing chain is established which allows us, for example, to see a cup, recognize it as such, reach out and take hold of it. Had there been a misconnection between the nerve cells somewhere along the way between the eyes and the hand, it would be impossible to reach the coffee in the cup.

It is thus essential for nerve cells to connect to the correct partner cells. Based on this fact, scientists of the Max Planck Institute of Neurobiology in Martinsried and colleagues from Kyoto investigated how an axon knows where it should stop growing and start setting up connections with surrounding cells. For their investigation, the neurobiologists analyzed the function of genes that play a role in the development of the visual system of the fruit fly.

The scientists now report in the scientific journal Nature Neuroscience that the visual system of the fruit fly is only able to develop correctly, when two genes work together -- the genes, that are in charge of producing the proteins "Golden Goal" and "Flamingo." These two proteins are located at the tip of a growing axon, where they are believed to gather information about their environment from the surrounding tissue. The actions of these two proteins enable nerve cells in a number of ways to find their way in the brain and recognize their target area. The study showed that chaos results if only one of the genes is active, or if there is a mismatch in the genes' activity: the axons cease to grow somewhere along the way and never reach their target area.

"We assume that very similar mechanisms play a role also in other organisms -- including humans," explains Takashi Suzuki, lead author of the study. "We are now a good way into understanding how to manipulate the cells in such a way that they are certain to reach their target area." This knowledge would be an important foundation for eventual therapies of developmental disorders based upon a misguided growth of nerve cells. The knowledge may also help in the guidance of regenerating nerve cells back to their old connection sites.


Story Source:

The above story is based on materials provided by Max-Planck-Gesellschaft. Note: Materials may be edited for content and length.


Journal Reference:

  1. Satoko Hakeda-Suzuki, Sandra Berger-Mόller, Tatiana Tomasi, Tadao Usui, Shin-ya Horiuchi, Tadashi Uemura, Takashi Suzuki. Golden Goal collaborates with Flamingo in conferring synaptic-layer specificity in the visual system. Nature Neuroscience, 2011; DOI: 10.1038/nn.2756

Cite This Page:

Max-Planck-Gesellschaft. "Partnership of genes affects the brain's development." ScienceDaily. ScienceDaily, 14 February 2011. <www.sciencedaily.com/releases/2011/02/110213162735.htm>.
Max-Planck-Gesellschaft. (2011, February 14). Partnership of genes affects the brain's development. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2011/02/110213162735.htm
Max-Planck-Gesellschaft. "Partnership of genes affects the brain's development." ScienceDaily. www.sciencedaily.com/releases/2011/02/110213162735.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microneedle Patch Promises Painless Pricks

Microneedle Patch Promises Painless Pricks

Reuters - Innovations Video Online (Oct. 18, 2014) — Researchers at The National University of Singapore have invented a new microneedle patch that could offer a faster and less painful delivery of drugs such as insulin and painkillers. Video provided by Reuters
Powered by NewsLook.com
Raw: Nurse Nina Pham Arrives in Maryland

Raw: Nurse Nina Pham Arrives in Maryland

AP (Oct. 17, 2014) — The first nurse to be diagnosed with Ebola at a Dallas hospital walked down the stairs of an executive jet into an ambulance at an airport in Frederick, Maryland, on Thursday. Pham will be treated at the National Institutes of Health. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Raw: Cruise Ship Returns to US Over Ebola Fears

Raw: Cruise Ship Returns to US Over Ebola Fears

AP (Oct. 17, 2014) — A Caribbean cruise ship carrying a Dallas health care worker who is being monitored for signs of the Ebola virus is heading back to Texas, US, after being refused permission to dock in Cozumel, Mexico. (Oct. 17) Video provided by AP
Powered by NewsLook.com
Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

AFP (Oct. 17, 2014) — All four suspected Ebola cases admitted to hospitals in Spain on Thursday have tested negative for the deadly virus in a first round of tests, the government said Friday. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins