Featured Research

from universities, journals, and other organizations

Waiter, there's metal in my moon water

Date:
February 22, 2011
Source:
NASA/Goddard Space Flight Center
Summary:
Bring a filter if you plan on drinking water from the moon. Water ice recently discovered in dust at the bottom of a crater near the moon's south pole is accompanied by metallic elements like mercury, magnesium, calcium, and even a bit of silver. Now you can add sodium to the mix, according to scientists.

The LCROSS visible camera image showing the ejecta plume at about 20 seconds after the Centaur impact.
Credit: NASA

Bring a filter if you plan on drinking water from the moon. Water ice recently discovered in dust at the bottom of a crater near the moon's south pole is accompanied by metallic elements like mercury, magnesium, calcium, and even a bit of silver. Now you can add sodium to the mix, according to Dr. Rosemary Killen of NASA's Goddard Space Flight Center in Greenbelt, Md.

Recent discoveries of significant deposits of water on the moon were surprising because our moon has had a tough life. Intense asteroid bombardments in its youth, coupled with its weak gravity and the Sun's powerful radiation, have left the moon with almost no atmosphere. This rendered the lunar surface barren and dry, compared to Earth.

However, due to the moon's orientation to the Sun, scientists theorized that deep craters at the lunar poles would be in permanent shadow and thus extremely cold, and able to trap volatile material like water as ice if such material were somehow transported there, perhaps by comet impacts or chemical reactions with hydrogen, a major component of the solar wind.

The October 9, 2009 impact of NASA's Lunar CRater Observation and Sensing Satellite (LCROSS) spacecraft into the permanently shadowed region of the Cabeus crater confirmed that a surprisingly large amount of water ice exists in this region, along with small amounts of many other elements, including metallic ones.

LCROSS was launched June 18, 2009 as a companion mission to NASA's Lunar Reconnaissance Orbiter, or LRO, from NASA's Kennedy Space Center in Florida. After separating from LRO, the LCROSS spacecraft held onto the spent Centaur upper stage rocket of the launch vehicle, executed a lunar swingby, and entered into a series of long looping orbits around Earth.

After traveling approximately 113 days and nearly 5.6 million miles (9 million km), the Centaur and LCROSS separated on final approach to the moon. Moving faster than most rifle bullets, the Centaur impacted the lunar surface with LCROSS and LRO watching using their onboard instruments. Approximately four minutes of data were collected by LCROSS before the spacecraft itself impacted the lunar surface.

Killen and her team observed the LCROSS impacts with the National Solar Observatory's McMath-Pierce solar telescope at the Kitt Peak National Observatory, Tucson, Ariz. They were the only team able to see the results of the impacts from the ground.

The impacts vaporized volatile material from the bottom of Cabeus crater, including water and sodium. After the vapor plume rose about 800 meters (around 2,600 feet) -- high enough to clear the shadow from the crater rim -- sunlight stimulated the sodium atoms, causing them to emit their signature yellow-orange glow. A high-resolution Echelle spectrometer attached to the telescope detected this unique glow. The instrument separates light into its component colors to identify materials by the characteristic colors they emit when energized by radiation or other events in space.

The spectrometer views the sky through a narrow slit to separate the colors, so the team had to make assumptions about the shape and temperature of the plume to estimate the total amount of sodium liberated by the impacts. Using a computer model of the impact and other data on the impacts from instruments on LCROSS and LRO to guide their assumptions, the team calculated that about one to two kilograms (about 2.2 to 4.4 pounds) of sodium were released. "This is one to two percent of the amount of water released by the impacts," said Killen. "Our oceans have a comparable sodium to water ratio -- about one percent." (The amount of sodium derived from the observations depends on the assumed temperature of the vapor.)

This much sodium raises the question: where did it all come from? Sodium atoms from comet impacts could bounce across the lunar surface until they landed in the permanently shadowed regions, where they would get "cold trapped" -- frozen in place. The solar wind carries small amounts of sodium, which could become embedded in the lunar surface, and it might also liberate sodium from lunar rocks, which are about 0.4 percent sodium. Sodium is also liberated from lunar rocks by meteoroid impacts. (The LCROSS impacts didn't have enough energy to vaporize rock, so it's unlikely the sodium vapor plume simply came from rocks at the impact site, according to Killen.)

"Two percent sodium to water is consistent with the amount of sodium in comets, so perhaps the bulk of the sodium and water came from comet impacts," said Killen. She makes it clear that this is just speculation at this point, and that it's possible they came from a different source or even a variety of sources, including cold-trapped lunar volatiles and solar-wind-induced chemistry. Better evidence for a cometary origin would come from an analysis of the hydrogen isotopes in lunar water, according to Killen.

Isotopes are versions of an element with different weights, or masses. For example, a deuterium atom is a heavier version of a common hydrogen atom because it has an extra particle -- a neutron -- in its nucleus at the center. Deuterium can be substituted for the regular form of hydrogen in a water molecule, but it is much less common than hydrogen, and its concentration varies in objects across the solar system. If the deuterium to hydrogen ratio in lunar water is similar to the ratio in comets, it would suggest the water came from comet impacts. Since comets as "dirty snowballs" carry many other materials, it would imply that much of the sodium and other volatiles came from comets as well.

The team plans to shed light on the origin of lunar water and other volatiles using data from the upcoming Lunar Atmosphere and Dust Environment Explorer (LADEE) mission, scheduled to be launched in May, 2013. The mission will orbit the moon and observe its tenuous atmosphere (technically called an exosphere, because it is so thin, atoms rarely collide with each other above the surface).

The research was funded by NASA's Dynamic Response of the Environment At the Moon (DREAM) project. "This discovery highlights a particular value of the DREAM program -- we can rapidly support missions like the LCROSS impact with additional observations and analysis," said Dr. William Farrell of NASA Goddard, lead of the DREAM institute.

The McMath-Pierce telescope is operated by the National Solar Observatory, which is funded by the National Science Foundation and managed by the Association of Universities for Research in Astronomy. Killen's paper on this research was published in Geophysical Research Letters in December 2010.


Story Source:

The above story is based on materials provided by NASA/Goddard Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Goddard Space Flight Center. "Waiter, there's metal in my moon water." ScienceDaily. ScienceDaily, 22 February 2011. <www.sciencedaily.com/releases/2011/02/110221081231.htm>.
NASA/Goddard Space Flight Center. (2011, February 22). Waiter, there's metal in my moon water. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2011/02/110221081231.htm
NASA/Goddard Space Flight Center. "Waiter, there's metal in my moon water." ScienceDaily. www.sciencedaily.com/releases/2011/02/110221081231.htm (accessed April 18, 2014).

Share This



More Space & Time News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Earth's Near-Twin Found Orbiting Red Dwarf

Earth's Near-Twin Found Orbiting Red Dwarf

Newsy (Apr. 17, 2014) The newly-discovered planet is roughly the size of Earth and could have liquid water on its surface. Video provided by Newsy
Powered by NewsLook.com
New Baby Moon 'Peggy' Spotted In Saturn's Rings

New Baby Moon 'Peggy' Spotted In Saturn's Rings

Newsy (Apr. 15, 2014) A bump in the rings could be a half-mile-wide miniature moon. It was found by accident in Cassini probe images. Video provided by Newsy
Powered by NewsLook.com
Americas Glimpse Total Lunar Eclipse

Americas Glimpse Total Lunar Eclipse

AFP (Apr. 15, 2014) A total lunar eclipse, the first since December 2011, took place early Tuesday morning with the Americas getting the best glimpse. Duration: 1:19 Video provided by AFP
Powered by NewsLook.com
NASA Showcases Lunar Eclipse

NASA Showcases Lunar Eclipse

AP (Apr. 15, 2014) Star gazers in parts of North and South America got a rare treat early Tuesday morning - a total eclipse of the moon. (April 15) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins