Featured Research

from universities, journals, and other organizations

'Fingerprints' match molecular simulations with reality

Date:
February 23, 2011
Source:
DOE/Oak Ridge National Laboratory
Summary:
A theoretical technique is bringing supercomputer simulations and experimental results closer together by identifying common "fingerprints." The method reconciles the different signals between experiments and computer simulations to strengthen analyses of molecules in motion.

As a molecule jumps between structural states (below), it creates "dynamical fingerprints" (top spectra) that can tie together high-performance simulation and experiments.
Credit: Image courtesy of DOE/Oak Ridge National Laboratory

A theoretical technique developed at the Department of Energy's Oak Ridge National Laboratory is bringing supercomputer simulations and experimental results closer together by identifying common "fingerprints."

ORNL's Jeremy Smith collaborated on devising a method -- dynamical fingerprints -- that reconciles the different signals between experiments and computer simulations to strengthen analyses of molecules in motion. The research will be published in the Proceedings of the National Academy of Sciences.

"Experiments tend to produce relatively simple and smooth-looking signals, as they only 'see' a molecule's motions at low resolution," said Smith, who directs ORNL's Center for Molecular Biophysics and holds a Governor's Chair at the University of Tennessee. "In contrast, data from a supercomputer simulation are complex and difficult to analyze, as the atoms move around in the simulation in a multitude of jumps, wiggles and jiggles. How to reconcile these different views of the same phenomenon has been a long-standing problem."

The new method solves the problem by calculating peaks within the simulated and experimental data, creating distinct "dynamical fingerprints." The technique, conceived by Smith's former graduate student Frank Noe, now at the Free University of Berlin, can then link the two datasets.

Supercomputer simulations and modeling capabilities can add a layer of complexity missing from many types of molecular experiments.

"When we started the research, we had hoped to find a way to use computer simulation to tell us which molecular motions the experiment actually sees," Smith said. "When we were finished we got much more -- a method that could also tell us which other experiments should be done to see all the other motions present in the simulation. This method should allow major facilities like the ORNL's Spallation Neutron Source to be used more efficiently."

Combining the power of simulations and experiments will help researchers tackle scientific challenges in areas like biofuels, drug development, materials design and fundamental biological processes, which require a thorough understanding of how molecules move and interact.

"Many important things in science depend on atoms and molecules moving," Smith said. "We want to create movies of molecules in motion and check experimentally if these motions are actually happening."

"The aim is to seamlessly integrate supercomputing with the Spallation Neutron Source so as to make full use of the major facilities we have here at ORNL for bioenergy and materials science development," Smith said.

The collaborative work included researchers from L'Aquila, Italy, Wuerzburg and Bielefeld, Germany, and the University of California at Berkeley. The research was funded in part by a Scientific Discovery through Advanced Computing grant from the DOE Office of Science.


Story Source:

The above story is based on materials provided by DOE/Oak Ridge National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Oak Ridge National Laboratory. "'Fingerprints' match molecular simulations with reality." ScienceDaily. ScienceDaily, 23 February 2011. <www.sciencedaily.com/releases/2011/02/110222122210.htm>.
DOE/Oak Ridge National Laboratory. (2011, February 23). 'Fingerprints' match molecular simulations with reality. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2011/02/110222122210.htm
DOE/Oak Ridge National Laboratory. "'Fingerprints' match molecular simulations with reality." ScienceDaily. www.sciencedaily.com/releases/2011/02/110222122210.htm (accessed September 18, 2014).

Share This



More Computers & Math News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
What HealthKit Bug Means For Your iOS Fitness Apps

What HealthKit Bug Means For Your iOS Fitness Apps

Newsy (Sep. 18, 2014) Apple has delayed the launch of the HealthKit app platform, citing a bug. Video provided by Newsy
Powered by NewsLook.com
Let's Review Apple's Latest iPhone Reviews

Let's Review Apple's Latest iPhone Reviews

Newsy (Sep. 17, 2014) The tech press has shared its thoughts on the latest iterations of Apple's iPhone. We summarize the reactions to help you decide: iPhone 6 or 6 Plus? Video provided by Newsy
Powered by NewsLook.com
Facebook Reportedly Building Another New Photo Sharing App

Facebook Reportedly Building Another New Photo Sharing App

Newsy (Sep. 17, 2014) Sources tell TechCrunch Facebook is working on Moments, an app for sharing photos with close friends and family. But why develop yet another new app? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins