Featured Research

from universities, journals, and other organizations

Pathway transforms normal cells into aggressive tumors

Date:
February 23, 2011
Source:
Lerner Research Institute
Summary:
Researchers have discovered a biological pathway that transforms normal cells into aggressive tumors. The research helps define the cellular events that lead to metastasis. While the study used breast cells, the pathway offers characteristics that are applicable to cancers in general.

A biological pathway that transforms normal cells into aggressive tumors has been discovered by researchers at Cleveland Clinic's Lerner Research Institute.

Related Articles


This research, led by Philip Howe, Ph.D., of the Cancer Biology Department of the Lerner Research Institute of Cleveland Clinic, was recently published in a recent issue of Molecular Cell.

This research helps define the cellular events that lead to metastasis. While the study used breast cells, the pathway offers characteristics that are applicable to cancers in general. It is hoped that this improved understanding of cancer development will lead to better diagnostic, preventative, and therapeutic procedures for the disease.

These studies build on those published by the same group last year in Nature Cell Biology, which identified the components of a molecular complex that prevents the processing of genetic material necessary for tumor development -- and a protein that reverses this to permit tumor-forming ability.

The current publication further defines this mechanism by showing evidence in a mouse model that tumor progression hinges on the role of a specific molecular factor called "hnRNP E1." Mice lacking hnRNP E1 developed metastatic tumors when challenged with normal, non-invasive breast cells: mice with hnRNP E1 did not.

The genetic material whose expression is regulated by this mechanism is necessary for what is known as the epithelial-mesenchymal transition (EMT). EMT describes how cells that are normally stationary become mobile. This process is essential for embryonic development. Once development is complete, the process is silenced -- except when a tumor forms. That is when the "safety" (i.e. hnRNP E1) is removed from the EMT-blocking complex, and the ensuing cell mobility promotes tumor progression.

Since EMT is not necessary in the normal adult, identifying the status of hnRNP E1 may be useful as a diagnostic approach for cancer. Furthermore, a strategy that prevents removing it from the complex may make it possible to specifically target cancerous versus normal tissue.


Story Source:

The above story is based on materials provided by Lerner Research Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. GeorgeS. Hussey, Arindam Chaudhury, AndreaE. Dawson, DanielJ. Lindner, CharlotteR. Knudsen, MatthewC.J. Wilce, WilliamC. Merrick, PhilipH. Howe. Identification of an mRNP Complex Regulating Tumorigenesis at the Translational Elongation Step. Molecular Cell, 2011; 41 (4): 419 DOI: 10.1016/j.molcel.2011.02.003

Cite This Page:

Lerner Research Institute. "Pathway transforms normal cells into aggressive tumors." ScienceDaily. ScienceDaily, 23 February 2011. <www.sciencedaily.com/releases/2011/02/110222122359.htm>.
Lerner Research Institute. (2011, February 23). Pathway transforms normal cells into aggressive tumors. ScienceDaily. Retrieved January 31, 2015 from www.sciencedaily.com/releases/2011/02/110222122359.htm
Lerner Research Institute. "Pathway transforms normal cells into aggressive tumors." ScienceDaily. www.sciencedaily.com/releases/2011/02/110222122359.htm (accessed January 31, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, January 31, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC: Get Vaccinated for Measles

CDC: Get Vaccinated for Measles

Reuters - US Online Video (Jan. 30, 2015) The CDC is urging people to get vaccinated for measles amid an outbreak that began at Disneyland and has now infected more than 90 people. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Obama To Outline New Plan For Personalized Medicine

Obama To Outline New Plan For Personalized Medicine

Newsy (Jan. 30, 2015) President Obama is expected to speak with drugmakers Friday about his Precision Medicine Initiative first introduced last week. Video provided by Newsy
Powered by NewsLook.com
NFL Concussions Down; Still on Parents' Minds

NFL Concussions Down; Still on Parents' Minds

AP (Jan. 30, 2015) The NFL announced this week that the number of game concussions dropped by a quarter over last season. Still, the dangers of the sport still weigh on players, and parents&apos; minds. (Jan. 30) Video provided by AP
Powered by NewsLook.com
U.S. Wants to Analyze DNA from 1 Million People

U.S. Wants to Analyze DNA from 1 Million People

Reuters - US Online Video (Jan. 30, 2015) The U.S. has proposed analyzing genetic information from more than 1 million American volunteers to learn how genetic variants affect health and disease. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins