Featured Research

from universities, journals, and other organizations

Premature aging replicated in the lab

Date:
February 25, 2011
Source:
Salk Institute
Summary:
The current pace of population aging is without parallel in human history but surprisingly little is known about the human aging process, because lifespans of eight decades or more make it difficult to study. Now, researchers have replicated premature aging in the lab, allowing them to study aging-related disease in a dish.

Left: Juan Carlos Izpisúa Belmonte, Ph.D. a professor in the Salk Institute's Gene Expression Laboratory. Right: Guang-Hui Liu, Ph.D., a postdoctoral researcher in the Belmonte lab.
Credit: Image courtesy of Salk Institute

The current pace of population aging is without parallel in human history but surprisingly little is known about the human aging process, because lifespans of eight decades or more make it difficult to study. Now, researchers at the Salk Institute for Biological Studies have replicated premature aging in the lab, allowing them to study aging-related disease in a dish.

In the February 23, 2011 advance online edition of the journal Nature, Juan Carlos Izpisúa Belmonte, Ph.D. a professor in the Salk Institute's Gene Expression Laboratory, and his team report that they have successfully generated induced pluripotent stem (iPS) cells from skin cells obtained from patients with Hutchinson-Gilford Progeria Syndrome -- who age eight to 10 times faster than the rest of us -- and differentiated them into smooth muscle cells displaying the telltale signs of vascular aging.

"The slow progression and complexity of the aging process makes it very hard to study the pathogenesis of cardiovascular and other aging-related disorders," says Izpisúa Belmonte. "Having a human model of accelerated aging will facilitate the development of treatments and possibly a cure for Progeria and give us new insights into how we age. It may also help prevent or treat heart disease in the general aging population."

Progeria's striking features resemble the aging process put on fast-forward and afflicted people rarely live beyond 13 years. Almost all of the patients die from complications of arteriosclerosis -- the clogging or hardening of arteries or blood vessels caused by plaques -- which leads to heart attack and stroke.

Scientists are particularly interested in Progeria in the hopes that it might reveal clues to the normal human aging process. However, the disease is exceedingly rare and only 64 children living with Progeria are known making access to patients very difficult.

Hutchinson-Gilford Progeria Syndrome is caused by a single point mutation in the gene encoding lamin A, which forms a protein scaffold on the inner edge of the nucleus that helps maintain chromatin structure and organize nuclear processes such as RNA and DNA synthesis. The mutation creates an alternative splice site that leads to the production of a truncated version of the protein known as progerin. Unlike the full-length protein, progerin does not properly integrate into the nuclear lamina, which disrupts the nuclear scaffold and causes a host of problems.

"There is also evidence that defective lamin A accumulates during the normal aging process via the sporadic use of the alternative splice site, " explains Izpisua Belmonte. "Therefore we are very keen on using our in vitro iPS cell-based model to identify new aging markers and explore other aspects of human premature and physiological aging."

Compared to normal skin fibroblasts, cells from Progeria patients have misshapen nuclei and a range of other nuclear defects, including a disorganized nuclear lamina, loss of super-condensed DNA, telomere shortening and genomic instability. Yet, despite their "old" appearance and characteristics, these cells could be readily converted into iPS cells.

"The reprogramming process erased all nuclear and epigenetic defects and the rejuvenated pluripotent cells looked and acted like perfectly normal healthy cells," says first author Guang-Hui Liu, Ph.D., a postdoctoral researcher in the Belmonte lab.

Since lamin A is only expressed in differentiated cells but is absent from embryonic stem cells, he wondered whether iPS cells produce lamin A and/or progerin, which should follow the same expression pattern as lamin A. In his experiments, he couldn't detect either one. "The biological clock is reset in these cells because lamin A is silenced," explains Liu.

As soon as the Salk researchers differentiated Progeria-derived iPS cells, progerin expression was reactivated. "This reversible suppression of progerin expression by reprogramming and subsequent reactivation during differentiation, provides a unique model system to study human premature aging pathologies," says Izpisúa Belmonte.

Progerin accumulates mainly in smooth muscle cells found within the walls of arterial blood vessels, and vascular smooth muscle cells degeneration is one of the hallmarks of Hutchinson-Gilford Progeria Syndrome-associated arteriosclerosis. In fact, vascular smooth muscle cell senescence also plays a role in advanced arteriosclerosis within the normal aging population.

Upon directed differentiation of Progeria-derived iPS cells into smooth muscle cells the premature aging phenotype, including misshapen nuclei, the loss of gene silencing marks and compromised proliferation, reappeared. Genetically modifying progeria-derived iPS cells to shut down the expression of progerin staved off the premature appearance of aging phenotypes after differentiation. "Transplantation of the progenitor cells derived from the "corrected" progeria iPS cells might hold the promise to treat these progeria children in the future." says Liu.

Other researchers contributing the study include Basam Z. Barkho, Sergio Ruiz, Jing Qu, Scheng-Liang Yang, Athanasia D. Panopoulos, Keiichiro Suzuki, Leo Kuraian, Christopher Walsh and Ignacio Sancho-Martinez in the Gene Expression Laboratory at the Salk Institute, Dinh Diep and Ho Lim Fung in the Department of Engineering at the University of California, San Diego, James Thompson and John Yates III in the Department of Cell Biology at the Scripps Research Institute and Stephanie Boue at the Center for Regenerative Medicine in Barcelona.

The study was supported by the California Institute of Regenerative Medicine, the AFAR/Ellison Medical Foundation, the G. Harold and Leila Y. Mathers Charitable Foundation, Sanofi-Aventis, MICINN, the Fundacion Cellex and grants from the National Institutes of Health.


Story Source:

The above story is based on materials provided by Salk Institute. Note: Materials may be edited for content and length.


Journal Reference:

  1. Guang-Hui Liu, Basam Z. Barkho, Sergio Ruiz, Dinh Diep, Jing Qu, Sheng-Lian Yang, Athanasia D. Panopoulos, Keiichiro Suzuki, Leo Kurian, Christopher Walsh, James Thompson, Stephanie Boue, Ho Lim Fung, Ignacio Sancho-Martinez, Kun Zhang, John Yates III, Juan Carlos Izpisua Belmonte. Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature, 2011; DOI: 10.1038/nature09879

Cite This Page:

Salk Institute. "Premature aging replicated in the lab." ScienceDaily. ScienceDaily, 25 February 2011. <www.sciencedaily.com/releases/2011/02/110223133844.htm>.
Salk Institute. (2011, February 25). Premature aging replicated in the lab. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2011/02/110223133844.htm
Salk Institute. "Premature aging replicated in the lab." ScienceDaily. www.sciencedaily.com/releases/2011/02/110223133844.htm (accessed April 18, 2014).

Share This



More Health & Medicine News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Obama: 8 Million Healthcare Signups

Obama: 8 Million Healthcare Signups

AP (Apr. 17, 2014) — President Barack Obama gave a briefing Thursday announcing 8 million people have signed up under the Affordable Care Act. He blasted continued Republican efforts to repeal the law. (April 17) Video provided by AP
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) — A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) — A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com
Thousands Of Vials Of SARS Virus Go Missing

Thousands Of Vials Of SARS Virus Go Missing

Newsy (Apr. 16, 2014) — A research institute in Paris somehow misplaced more than 2,000 vials of the deadly SARS virus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins