Featured Research

from universities, journals, and other organizations

Using artificial, cell-like 'honey pots' to entrap deadly viruses

Date:
March 3, 2011
Source:
National Institute of Standards and Technology (NIST)
Summary:
Researchers have designed artificial "protocells" that can lure, entrap and inactivate a class of deadly human viruses -- think decoys with teeth.

Researchers from the National Institute of Standards and Technology (NIST) and the Weill Cornell Medical College have designed artificial "protocells" that can lure, entrap and inactivate a class of deadly human viruses -- think decoys with teeth. The technique offers a new research tool that can be used to study in detail the mechanism by which viruses attack cells, and might even become the basis for a new class of antiviral drugs.

A new paper details how the novel artificial cells achieved a near 100 percent success rate in deactivating experimental analogs of Nipah and Hendra viruses, two emerging henipaviruses that can cause fatal encephalitis (inflammation of the brain) in humans.

"We often call them honey pot protocells," says NIST materials scientist David LaVan, "The lure, the irresistibly sweet bait that you can use to capture something."

Henipaviruses, LaVan explains, belong to a broad class of human pathogens -- other examples include parainfluenza, respiratory syncytial virus, mumps and measles -- called enveloped viruses because they are surrounded by a two-layer lipid membrane similar to that enclosing animal cells. A pair of proteins embedded in this membrane act in concert to infect host cells. One, the so-called "G" protein, acts as a spotter, recognizing and binding to a specific "receptor" protein on the surface of the target cell.

The G protein then signals the "F" protein, explains LaVan, though the exact mechanism isn't well understood. "The F protein cocks like a spring, and once it gets close enough, fires its harpoon, which penetrates the cell's bilayer and allows the virus to pull itself into the cell. Then the membranes fuse and the payload can get delivered into the cell and take over." It can only do it once, however.

The "honey pot" protocells have a core of nanoporous silica -- inert but providing structural strength -- wrapped in a lipid membrane like a normal cell. In this membrane the research team embedded bait, the protein Ephrin-B2, a known target of henipaviruses. To test it, they exposed the protocells to experimental analogs of the henipaviruses developed at Weill Cornell. The analogs are nearly identical to henipaviruses on the outside, but instead of henipaviral RNA, they bear the genome of a nonpathogenic virus that is engineered to express a fluorescent protein upon infection. This enables counting and visualizing infected cells.

In controlled experiments, the team demonstrated that the protocells are amazingly effective decoys, essentially clearing a test solution of active viruses, as measured by using the fluorescent protein to determine how many normal cells are infected by the remaining viruses.

The immediate benefit, LaVan says, is a powerful research tool for studying how envelope viruses work. "This is a nice system to study this sort of choreography between a virus and a cell, which has been very hard to study. A normal cell will have tens of thousands of membrane proteins. You might be studying this one, but maybe it's one of the others that are really influencing your experiment. You reduce this essentially impossibly complicated natural cell to a very pure system, so you now can vary the parameters and try to figure out how you can trick the viruses."

In the long run, say the researchers, the honey pot protocells could become a whole new class of antiviral drugs. Viruses, they point out, are notorious for rapidly evolving to become resistant to drugs, but because the honey pots use the virus's basic infection mechanism, any virus that evolved to avoid them likely would be less effective at infecting normal cells as well.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Matteo Porotto, Feng Yi, Anne Moscona, David A. LaVan. Synthetic Protocells Interact with Viral Nanomachinery and Inactivate Pathogenic Human Virus. PLoS ONE, 2011; 6 (3): e16874 DOI: 10.1371/journal.pone.0016874

Cite This Page:

National Institute of Standards and Technology (NIST). "Using artificial, cell-like 'honey pots' to entrap deadly viruses." ScienceDaily. ScienceDaily, 3 March 2011. <www.sciencedaily.com/releases/2011/03/110302121842.htm>.
National Institute of Standards and Technology (NIST). (2011, March 3). Using artificial, cell-like 'honey pots' to entrap deadly viruses. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2011/03/110302121842.htm
National Institute of Standards and Technology (NIST). "Using artificial, cell-like 'honey pots' to entrap deadly viruses." ScienceDaily. www.sciencedaily.com/releases/2011/03/110302121842.htm (accessed July 28, 2014).

Share This




More Plants & Animals News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Asteroid's Timing Was 'Colossal Bad Luck' For The Dinosaurs

Newsy (July 28, 2014) The asteroid that killed the dinosaurs struck at the worst time for them. A new study says that if it hit earlier or later, they might've survived. Video provided by Newsy
Powered by NewsLook.com
Raw: Sea Turtle Hatchlings Emerge from Nest

Raw: Sea Turtle Hatchlings Emerge from Nest

AP (July 27, 2014) A live-streaming webcam catches loggerhead sea turtle hatchlings emerging from a nest in the Florida Keys. (July 27) Video provided by AP
Powered by NewsLook.com
Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins