Featured Research

from universities, journals, and other organizations

Multiple sclerosis blocked in mouse model: Barring immune cells from brain prevents symptoms

Date:
March 7, 2011
Source:
Washington University School of Medicine in St. Louis
Summary:
Scientists have blocked harmful immune cells from entering the brain in mice with a condition similar to multiple sclerosis (MS).

New insights into how the brain and spine regulate immune cell entry have allowed scientists at Washington University School of Medicine to block the development of multiple sclerosis-like symptoms using a mouse model of the disease. When scientists gave mice a drug that suppressed the activity of a key molecule, immune cells (stained green in these images) lined up at the boundaries of the spine (right) instead of going in (left).
Credit: Robyn Klein, MD, PhD

Scientists have blocked harmful immune cells from entering the brain in mice with a condition similar to multiple sclerosis (MS).

Related Articles


According to researchers from Washington University School of Medicine in St. Louis, this is important because MS is believed to be caused by misdirected immune cells that enter the brain and damage myelin, an insulating material on the branches of neurons that conduct nerve impulses.

New insights into how the brain regulates immune cell entry made the accomplishment possible. Washington University scientists had borrowed an anti-cancer drug in development by the company ChemoCentryx simply to test their theories.

"The results were so dramatic that we ended up producing early evidence that this compound might be helpful as a drug for MS," says Robyn Klein, MD, PhD, associate professor of pathology and immunology, of medicine and of neurobiology. "The harmful immune cells were unable to gain access to the brain tissue, and the mice that received the highest dosage were protected from disease."

ChemoCentryx is now testing the drug in Phase I safety trials. The study is published in The Journal of Experimental Medicine.

Klein and her colleagues discovered a chemical stairway that immune cells have to climb down to enter the brain. Immune cells that exit the blood remain along the vessels on the tissue side, climbing down from the meninges into the brain where they can then cross additional barriers and attack myelin on the branches of neurons.

"The effect of immune cell entry into the brain depends on context," Klein says. "In the case of viral infection, immune cell entry is required to clear the virus. But in autoimmune diseases like multiple sclerosis, their entry is associated with damage so we need to find ways to keep them out."

The stairway is located on the tissue side of the microvasculature, tiny vessels that carry blood into the central nervous system. The steps are made of a molecule called CXCL12 that localizes immune cells, acting like stairs that slow them down so that they can be evaluated to determine if they are allowed to enter the brain. Klein's lab previously discovered that the blood vessel cells of the microvasculature display copies of this molecule on their surfaces.

Klein also found that MS causes CXCL12 to be pulled inside blood vessel cells in humans and mice, removing the stairway's steps and the checkpoints they provide. In the new paper, she showed that blocking the internalization of the molecule prevented immune cells from getting into the brain and doing harm.

Work by another lab called Klein's attention to CXCR7, a receptor that binds to CXCL12. She showed that the receptor is made by the same cells in the microvasculature that display CXCL12. They watched the receptor take copies of CXCL12 and dump them in the cells' lysosomes, pockets for breakdown and recycling of molecules the cell no longer needs.

"After it dumps its cargo in the lysosome, the receptor can go right back to the cell surface to pull in another copy of CXCL12," Klein says. "There likely exists an equilibrium between expression and disposal of CXCL12. Some of the proteins expressed by the immune cells in MS patients affect CXCR7 expression and activity, disrupting the equilibrium and stripping the steps from this immune cell stairway we're studying."

Klein contacted researchers at ChemoCentryx, who were developing a blocker of the CXCR7 receptor as a cancer treatment. When they gave it to the mouse model of MS, immune cells stopped at the meninges.

Klein also found that immune factors could cause microvasculature cells to make more or less of CXCR7, ramping up or down the number of steps on the chemical stairway. She is currently investigating additional immune factors that impact on CXCR7 activity within the blood vessel cell. Whether a given factor promotes or suppresses the receptor may also differ depending upon what part of the brain is being considered.

"One of the biggest questions in MS has been why the location, severity and progression of disease varies so much from patient to patient," Klein says. "Getting a better understanding of how these factors regulate immune cell entry will be an important part of answering that question."


Story Source:

The above story is based on materials provided by Washington University School of Medicine in St. Louis. The original article was written by Michael C. Purdy. Note: Materials may be edited for content and length.


Journal Reference:

  1. L. Cruz-Orengo, D. W. Holman, D. Dorsey, L. Zhou, P. Zhang, M. Wright, E. E. McCandless, J. R. Patel, G. D. Luker, D. R. Littman, J. H. Russell, R. S. Klein. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. Journal of Experimental Medicine, 2011; 208 (2): 327 DOI: 10.1084/jem.20102010

Cite This Page:

Washington University School of Medicine in St. Louis. "Multiple sclerosis blocked in mouse model: Barring immune cells from brain prevents symptoms." ScienceDaily. ScienceDaily, 7 March 2011. <www.sciencedaily.com/releases/2011/03/110307103652.htm>.
Washington University School of Medicine in St. Louis. (2011, March 7). Multiple sclerosis blocked in mouse model: Barring immune cells from brain prevents symptoms. ScienceDaily. Retrieved November 23, 2014 from www.sciencedaily.com/releases/2011/03/110307103652.htm
Washington University School of Medicine in St. Louis. "Multiple sclerosis blocked in mouse model: Barring immune cells from brain prevents symptoms." ScienceDaily. www.sciencedaily.com/releases/2011/03/110307103652.htm (accessed November 23, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, November 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

WFP: Ebola Risks Heightened Among Women Throughout Africa

WFP: Ebola Risks Heightened Among Women Throughout Africa

AFP (Nov. 21, 2014) Having children has always been a frightening prospect in Sierra Leone, the world's most dangerous place to give birth, but Ebola has presented an alarming new threat for expectant mothers. Duration: 00:37 Video provided by AFP
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Raw: Paralyzed Marine Walks With Robotic Braces

Raw: Paralyzed Marine Walks With Robotic Braces

AP (Nov. 21, 2014) Marine Corps officials say a special operations officer left paralyzed by a sniper's bullet in Afghanistan walked using robotic leg braces in a ceremony to award him a Bronze Star. (Nov. 21) Video provided by AP
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins