Featured Research

from universities, journals, and other organizations

Earliest cardiovascular progenitors that arise during the differentiation of pluripotent stem cells isolated

Date:
March 8, 2011
Source:
Libre de Bruxelles, Université
Summary:
Pluripotent stem cells and induced pluripotent stem cells (iPS) have the capacity to differentiate into any cell type in the body, including cardiac and vascular cells, which give hope that one day, we can use these cells to replace the death or damaged cells in various diseases. The discovery of novel methods allowing the purification of cardiovascular progenitors during embryonic stem cell differentiation is thus essential before these cells could be used in large scale to treat patients suffering from cardiovascular diseases or for drug discovery.

Researchers from the Université libre de Bruxelles(ULB) led by Dr. Cédric Blanpain have isolated the earliest cardiovascular progenitors that arise during the differentiation of pluripotent stem cells.

The heart is composed of different cell types including the contractile muscle cells and the vascular cells. During embryonic development all cardiac cells and certain blood vessels derive from primitive cells known as cardiovascular progenitors.

Pluripotent stem cells and induced pluripotent stem cells (iPS) have the capacity to differentiate into any cell type in the body, including cardiac and vascular cells, which give hope that one day, we can use these cells to replace the death or damaged cells in various diseases. The discovery of novel methods allowing the purification of cardiovascular progenitors during embryonic stem cell differentiation is thus essential before these cells could be used in large scale to treat patients suffering from cardiovascular diseases or for drug discovery.

Researchers led by Dr Cédric Blanpain, FNRS researcher at IRIBHM, Université libre de Bruxelles (ULB), Belgium, studied the mechanisms that govern the specification of cardiovascular progenitors during pluripotent stem cell differentiation. In a new study published in the Journal of Cell Biology, the ULB researchers used genetically engineered embryonic stem cells that become fluorescent when the stem cells become cardiovascular progenitors. By isolating these fluorescent cells, they purified the cardiovascular progenitors and differentiated these cells into beating cardiac cells in vitro and in vivo.

"It was really amazing," commented Dr Antoine Bondue, postdoctoral fellow of the FNRS and first author of this study, "We can now purify the early cardiovascular progenitors and predict in advance which cells will give rise to cardiac cells. It was like dozens of little hearts were beating in the petri dish containing the fluorescent progenitors while no cell was contracting in the dish containing the non fluorescent cells."

Using whole genome analysis of these isolated fluorescent cardiovascular progenitors, the researchers identified novel markers expressed by these cells that allow for their isolation without the need of any other genetic manipulations. This important finding will provide, to the scientific community as well as the pharmaceutical industry, a simple and robust method to isolate cardiovascular progenitors arising from the differentiation of pluripotent stem cells. "This finding will be of great help to upscale the production of cardiovascular cells obtained during pluripotent stem cells differentiation, to better understand what are the conditions needed to amplify cardiovascular progenitors further and how can we push the differentiation of these cells into very specific cardiac or vascular cell types, and hopefully this will accelerate the basic research necessary before the physician will be able to use safely cardiovascular cells to treat patients suffering from cardiovascular diseases, and more importantly to be able to provide to these patients a clear clinical benefit," commented Dr Blanpain.

This work was supported by the Belgian FNRS, a career development award of the Human Frontier Science Program Organization (HFSPO), la Fondation ULB, a starting grant of the European Research Council (ERC) and the EMBO Young Investigator Program.


Story Source:

The above story is based on materials provided by Libre de Bruxelles, Université. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Bondue, S. Tannler, G. Chiapparo, S. Chabab, M. Ramialison, C. Paulissen, B. Beck, R. Harvey, C. Blanpain. Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation. The Journal of Cell Biology, 2011; 192 (5): 751 DOI: 10.1083/jcb.201007063

Cite This Page:

Libre de Bruxelles, Université. "Earliest cardiovascular progenitors that arise during the differentiation of pluripotent stem cells isolated." ScienceDaily. ScienceDaily, 8 March 2011. <www.sciencedaily.com/releases/2011/03/110308155808.htm>.
Libre de Bruxelles, Université. (2011, March 8). Earliest cardiovascular progenitors that arise during the differentiation of pluripotent stem cells isolated. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2011/03/110308155808.htm
Libre de Bruxelles, Université. "Earliest cardiovascular progenitors that arise during the differentiation of pluripotent stem cells isolated." ScienceDaily. www.sciencedaily.com/releases/2011/03/110308155808.htm (accessed October 21, 2014).

Share This



More Health & Medicine News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

CDC Revamps Ebola Guidelines After Criticism

CDC Revamps Ebola Guidelines After Criticism

Newsy (Oct. 21, 2014) — The Centers for Disease Control and Prevention have issued new protocols for healthcare workers interacting with Ebola patients. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Vaccine Trials to Start a in January

WHO: Ebola Vaccine Trials to Start a in January

AP (Oct. 21, 2014) — Tens of thousands of doses of experimental Ebola vaccines could be available for "real-world" testing in West Africa as soon as January as long as they are deemed safe in soon to start trials, the World Health Organization said Tuesday. (Oct. 21) Video provided by AP
Powered by NewsLook.com
First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

First-Of-Its-Kind Treatment Gives Man Ability To Walk Again

Newsy (Oct. 21, 2014) — A medical team has for the first time given a man the ability to walk again after transplanting cells from his brain onto his severed spinal cord. Video provided by Newsy
Powered by NewsLook.com
CDC Issues New Ebola Guidelines for Health Workers

CDC Issues New Ebola Guidelines for Health Workers

Reuters - US Online Video (Oct. 21, 2014) — The U.S. Centers for Disease Control and Prevention has set up new guidelines for health workers taking care of patients infected with Ebola. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins