Featured Research

from universities, journals, and other organizations

New switching device could help build an ultrafast 'quantum Internet'

Date:
March 10, 2011
Source:
Northwestern University
Summary:
Researchers have developed a new switching device that takes quantum communication to a new level. They can route quantum bits, or entangled particles of light, at very high speeds along a shared network of fiber-optic cable without losing the entanglement information embedded in the quantum bits. The switch could be used toward achieving two goals of the information technology world: a quantum Internet, where encrypted information would be completely secure, and networking superfast quantum computers.

A new switching device could be used to develop a 'quantum Internet,' where encrypted information would be completely secure, and networking superfast quantum computers.
Credit: iStockphoto/Andrey Prokhorov

Northwestern University researchers have developed a new switching device that takes quantum communication to a new level. The device is a practical step toward creating a network that takes advantage of the mysterious and powerful world of quantum mechanics.

Related Articles


The researchers can route quantum bits, or entangled particles of light, at very high speeds along a shared network of fiber-optic cable without losing the entanglement information embedded in the quantum bits. The switch could be used toward achieving two goals of the information technology world: a quantum Internet, where encrypted information would be completely secure, and networking superfast quantum computers.

The device would enable a common transport mechanism, such as the ubiquitous fiber-optic infrastructure, to be shared among many users of quantum information. Such a system could route a quantum bit, such as a photon, to its final destination just like an e-mail is routed across the Internet today.

The research -- a demonstration of the first all-optical switch suitable for single-photon quantum communications -- is published by the journal Physical Review Letters.

"My goal is to make quantum communication devices very practical," said Prem Kumar, AT&T Professor of Information Technology in the McCormick School of Engineering and Applied Science and senior author of the paper. "We work in fiber optics so that as quantum communication matures it can easily be integrated into the existing telecommunication infrastructure."

The bits we all know through standard, or classical, communications only exist in one of two states, either "1" or "0." All classical information is encoded using these ones and zeros. What makes a quantum bit, or qubit, so attractive is it can be both one and zero simultaneously as well as being one or zero. Additionally, two or more qubits at different locations can be entangled -- a mysterious connection that is not possible with ordinary bits.

Researchers need to build an infrastructure that can transport this "superposition and entanglement" (being one and zero simultaneously) for quantum communications and computing to succeed.

The qubit Kumar works with is the photon, a particle of light. A photonic quantum network will require switches that don't disturb the physical characteristics (superposition and entanglement properties) of the photons being transmitted, Kumar says. He and his team built an all-optical, fiber-based switch that does just that while operating at very high speeds.

To demonstrate their switch, the researchers first produced pairs of entangled photons using another device developed by Kumar, called an Entangled Photon Source. "Entangled" means that some physical characteristic (such as polarization as used in 3-D TV) of each pair of photons emitted by this device are inextricably linked. If one photon assumes one state, its mate assumes a corresponding state; this holds even if the two photons are hundreds of kilometers apart.

The researchers used pairs of polarization-entangled photons emitted into standard telecom-grade fiber. One photon of the pair was transmitted through the all-optical switch. Using single-photon detectors, the researchers found that the quantum state of the pair of photons was not disturbed; the encoded entanglement information was intact.

"Quantum communication can achieve things that are not possible with classical communication," said Kumar, director of Northwestern's Center for Photonic Communication and Computing. "This switch opens new doors for many applications, including distributed quantum processing where nodes of small-scale quantum processors are connected via quantum communication links."


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Matthew Hall, Joseph Altepeter, Prem Kumar. Ultrafast Switching of Photonic Entanglement. Physical Review Letters, 2011; 106 (5) DOI: 10.1103/PhysRevLett.106.053901

Cite This Page:

Northwestern University. "New switching device could help build an ultrafast 'quantum Internet'." ScienceDaily. ScienceDaily, 10 March 2011. <www.sciencedaily.com/releases/2011/03/110310131058.htm>.
Northwestern University. (2011, March 10). New switching device could help build an ultrafast 'quantum Internet'. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2011/03/110310131058.htm
Northwestern University. "New switching device could help build an ultrafast 'quantum Internet'." ScienceDaily. www.sciencedaily.com/releases/2011/03/110310131058.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
After Sony Hack, What's Next?

After Sony Hack, What's Next?

Reuters - US Online Video (Dec. 19, 2014) The hacking attack on Sony Pictures has U.S. government officials weighing their response to the cyber-attack. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins