Featured Research

from universities, journals, and other organizations

Scientists link DNA 'end-caps' length to diabetes risk; New role for short telomeres

Date:
March 28, 2011
Source:
Johns Hopkins Medical Institutions
Summary:
New evidence has emerged from studies in mice that short telomeres or "caps" at the ends of chromosomes may predispose people to age-related diabetes, according to scientists.

New evidence has emerged from studies in mice that short telomeres or "caps" at the ends of chromosomes may predispose people to age-related diabetes, according to Johns Hopkins scientists.

Telomeres are repetitive sequences of DNA that protect the ends of chromosomes, and they normally shorten with age, much like the caps that protect the end of shoelaces. As telomeres shorten, cells lose the ability to divide normally and eventually die. Telomere shortening has been linked to cancer, lung disease, and other age-related illnesses. Diabetes, also a disease of aging, affects as many as one in four adults over the age of 60.

The Johns Hopkins research, described in the March 10 issue of PLoS ONE, arose from scientist Mary Armanios' observation that diabetes seems to occur more often in patients with dyskeratosis congenita, a rare, inherited disease caused by short telomeres. Patients with dyskeratosis congenita often have premature hair graying and are prone to develop early organ failure.

"Dyskeratosis congenita is a disease that essentially makes people age prematurely. We knew that the incidence of diabetes increases with age, so we thought there may be a link between telomeres and diabetes," says Armanios, assistant professor of oncology at the Johns Hopkins Kimmel Cancer Center.

Armanios studied mice with short telomeres and their insulin-producing beta cells. Human diabetics lack sufficient insulin production and have cells resistant to its efficient use, causing disruption to the regulation of sugar levels in the blood.

Armanios found that despite the presence of plentiful, healthy-looking beta cells in the mice, they had higher blood sugar levels and secreted half as much insulin as the controls. "This mimics early stages of diabetes in humans where cells have trouble secreting insulin in response to sugar stimulus," says Armanios.

"Many of the steps of insulin secretion in these mice, from mitochondrial energy production to calcium signaling, functioned at half their normal levels," says Armanios.

In beta cells from mice with short telomeres, they found disregulation of p16, a gene linked to aging and diabetes. No such mistakes were found in the controls.

In addition, many of the gene pathways essential for insulin secretion in beta cells, including pathways that control calcium signaling, were altered in beta cells from mice with short telomeres.

Armanios says that some studies have suggested that diabetic patients may have short telomeres, but it was not clear whether this contributes to diabetes risk or is a consequence of the disease.

"Age is the most important risk factor for diabetes, and we also know that family heredity plays a very important role. Telomere length is an inherited factor and may make people more prone to develop diabetes," says Armanios.

Based on this work, Armanios says that telomere length could serve as a biomarker for development of diabetes. Armanios and her colleagues are planning to conduct research to examine whether telomere length can predict the risk of diabetes prospectively.

The research was funded by the National Institutes of Health, a Ruth L. Kirschstein Award, the Maryland Stem Cell Research Fund, Sidney Kimmel Foundation, Doris Duke Charitable Foundation, the Swedish Research Council and the Family Erling-Persson Foundation.

Participants in the research included Nini Guo, Erin M. Parry, Frant Kembou, Naudia Lauder, Mehboob A. Hussain from Johns Hopkins; and Luo-Sheng Li and Per-Olof Berggren from the Karolinska Institutet in Sweden.


Story Source:

The above story is based on materials provided by Johns Hopkins Medical Institutions. Note: Materials may be edited for content and length.


Journal Reference:

  1. Nini Guo, Erin M. Parry, Luo-Sheng Li, Frant Kembou, Naudia Lauder, Mehboob A. Hussain, Per-Olof Berggren, Mary Armanios. Short Telomeres Compromise β-Cell Signaling and Survival. PLoS ONE, 2011; 6 (3): e17858 DOI: 10.1371/journal.pone.0017858

Cite This Page:

Johns Hopkins Medical Institutions. "Scientists link DNA 'end-caps' length to diabetes risk; New role for short telomeres." ScienceDaily. ScienceDaily, 28 March 2011. <www.sciencedaily.com/releases/2011/03/110324103604.htm>.
Johns Hopkins Medical Institutions. (2011, March 28). Scientists link DNA 'end-caps' length to diabetes risk; New role for short telomeres. ScienceDaily. Retrieved September 23, 2014 from www.sciencedaily.com/releases/2011/03/110324103604.htm
Johns Hopkins Medical Institutions. "Scientists link DNA 'end-caps' length to diabetes risk; New role for short telomeres." ScienceDaily. www.sciencedaily.com/releases/2011/03/110324103604.htm (accessed September 23, 2014).

Share This



More Health & Medicine News

Tuesday, September 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Costs Keep Mounting

Ebola Costs Keep Mounting

Reuters - Business Video Online (Sep. 23, 2014) The WHO has warned up to 20,000 people could be infected with Ebola over the next few weeks. As Sonia Legg reports, the implications for the West African countries suffering from the disease are huge. Video provided by Reuters
Powered by NewsLook.com
Ebola Cases Could Reach 1.4 Million Within 4 Months

Ebola Cases Could Reach 1.4 Million Within 4 Months

Newsy (Sep. 23, 2014) Health officials warn that without further intervention, the number of Ebola cases in Liberia and Sierra Leone could reach 1.4 million by January. Video provided by Newsy
Powered by NewsLook.com
WHO: Ebola Cases to Triple in Weeks Without Drastic Action

WHO: Ebola Cases to Triple in Weeks Without Drastic Action

AFP (Sep. 23, 2014) The number of Ebola infections will triple to 20,000 by November, soaring by thousands every week if efforts to stop the outbreak are not stepped up radically, the WHO warned in a study on Tuesday. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
5 Ways Men Can Prevent Most Heart Attacks

5 Ways Men Can Prevent Most Heart Attacks

Newsy (Sep. 23, 2014) No surprise here: A recent study says men can reduce their risk of heart attack by maintaining a healthy lifestyle, which includes daily exercise. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins